Сопротивление контура заземления – советы электрика

Расчет защитного заземления

Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму. Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители вбиваются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления.

К чему сводится расчет заземления?

Обратите внимание

Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.

Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.

Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.

Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

где – ρэкв – эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

где – Ψ – сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t – заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Удельное сопротивление грунта Таблица 1

Грунт Удельное сопротивление грунта, Ом·м
Торф 20
Почва (чернозем и др.) 50
Глина 60
Супесь 150
Песок при грунтовых водах до 5 м 500
Песок при грунтовых водах глубже 5 м 1000

Заглубление горизонтального заземлителя можно найти по формуле:

Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.

Значение сезонного климатического коэффициента сопротивления грунта Таблица 2

Тип заземляющих электродов Климатическая зона
I II III IV
Стержневой (вертикальный) 1.8 ÷ 2 1.5 ÷ 1.8 1.4 ÷ 1.6 1.2 ÷ 1.4
Полосовой (горизонтальный) 4.5 ÷ 7 3.5 ÷ 4.5 2 ÷ 2.5 1.5
Климатические признаки зон
Средняя многолетняя низшая температура (январь) от -20+15 от -14+10 от -10 до 0 от 0 до +5
Средняя многолетняя высшая температура (июль) от +16 до +18 от +18 до +22 от +22 до +24 от +24 до +26

Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:

Rн – нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).

Наибольшее допустимое значение сопротивления заземляющих устройств (ПТЭЭП) Таблица 3

Характеристика электроустановки Удельное сопротивление грунта ρ, Ом·м Сопротивление Заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380 до 100 15
свыше 100 0.5·ρ
380/220 до 100 30
свыше 100 0.3·ρ
220/127 до 100 60
свыше 100 0.6·ρ

Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.

Сопротивление растекания тока для горизонтального заземлителя:

Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

 – в ряд; – по контуру.

а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Полное количество вертикальных заземлителей определяется по формуле:

ηв – коэффициент спроса вертикальных заземлителей (таблица 4).

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего.

Важно

Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.

Источник: https://electricvdome.ru/zazemlenie/raschet-zazemlenia.html

Периодичность и правила замера сопротивления заземления

При пользовании электросетями необходимо строго соблюдать правила эксплуатации, выполнять периодический осмотр системы проводов и замеров показаний тока на защитных деталях системы. Сопротивление заземления нейтрали – одна из основных работ по контролю устройств защиты здания и человека.

Перед началом замеров, необходимо знать основные неисправности и способы их обнаружения.

Причины неисправностей на заземляющем контуре

При нормальной работе системы защиты, ток короткого замыкания фазы на корпус или утечки по глухозаземленной проводке, подходит на контур и через систему заземлителей снимается на землю.

Но при длительном использовании, заземлители окисляются под действием воды, на них происходит образование ржавчины. При продолжении действия вредной среды, очаг поражения расширяется и еще больше поражает металл, ржавчина изъедает сталь, местами коррозия металла разъедает стойки контура насквозь.

При этом меняется значение величины сопротивления электрического тока. При этом колья заземлителей могут разрушаться неравномерно. Это обусловлено неравномерным распределением в грунте химических веществ и щелочных, соляных растворов и некоторых кислот.

Затем происходит отслаивание металла поврежденного ржавчиной и глубинной коррозией, при этом происходит ухудшение или полное размыкание контакта контура и отдельного заземлителя. Этот процесс идет с нарастанием и в конечном итоге заземление перестает выполнять свои функции из-за изменения уровня сопротивления на контуре и его проводимости потенциала токов КЗ в землю.

Приборы для замеров

Для измерения сопротивления контура применяются электронные мультиметры, сменившие аналоговые устройства. При этом увеличилась точность уровня измерения при упрощении выполнения операции.

По правилам ПУЭ, сопротивление заземлителя не менее одного раза в шестилетний период.

Совет

Поэтому не затратно будет вызвать для проведения замеров профессионалов, которые имеют более точные и новейшие разработки промышленности.

Но если вы решили провести эту операцию самостоятельно, потребуется запастись следующими измерительными приборами:

  • измеритель сопротивления типа «МС- 08»;
  • измеритель заземляющего контура типа «М-416»;
  • тестер или мощный мультиметр.

Для более низкого уровня измерения и определения неисправности защиты, можно использовать мультиметр, дополнительно оснащенный токовыми клещами.

Способы выполнения замеров

Способов измерения сопротивления заземляющих устройств много и каждый достаточно точный, поэтому разберем их подробно, а какой из них применить решать вам:

  1. Замеряем значения напряжения и силы тока.

    Для этого, на удаленности от контура больше 20 метров, забиваем в грунт заземлитель и дополнительный электрод. Затем по проводам, подаем на них нагрузку.

    Выставляем мультиметр в сектор замены силы тока, определяем ее значение. Затем переключаем прибор в сектор замера напряжения, измеряем данную величину.

    По формуле Закона Ома определяем величину сопротивления на данном участке с глухозаземленной нейтралью.

    Теперь проводим замер сопротивления на защитном контуре и определяем износ деталей защиты и возможную замену заземлителей. При этом необходимо учитывать значение сопротивления кабеля земли и проводящих особенностей земли на участке.

    К плюсам этого способа относят его простоту выполнения замеров. Недостаток – это малый уровень точности замера, и дополнительное устройство заземлителей для определения номинального значения.

    https://www.youtube.com/watch?v=Uw5eRGM34v4

    Если не требуется определения точного значения сопротивления на контуре, то процедуру измерений можно завершить. Для более точного замера выполняем следующую работу.

  2. Четырехпроводный метод замера.
    Работу следует выполнять в следующей последовательности:

    Выбираем, с помощью кнопки «Режим», нужный метод выполнения замеров.

    Рулеткой, замеряем длину диагонали защитного контура. Затем от контура проводим провода и подключаем их в гнезда на приборе.

    Выносной заземлитель, забиваем в грунт. Расстояние до контура больше 20 метров, но не менее, полуторной диагонали устройства.

    2 стержень забиваем в землю на удалении больше3 размеров диагонали. Расстояние до контура не меньше 40 метров. Подключаем идущий от него провод на клемму прибора.

    Обратите внимание

    Проверяем правильность подключение и выполняем замер. Затем, перемещая заземлитель, с изменением длины на 10% ближе ко 2 стержню, проводим серию измерений.

    При установке стержней, располагать их необходимо на одной линии с заземляемым контуром. При помехе напряжения на штырях, измеритель сопротивления покажет это на шкале. В этом случае необходимо перебить стержни и повторить измерение.

    Исходя из значений измерения, в зависимости от удаленности от защитного устройства, составляем график. При возрастании величины измерения в средней части графика – в этом случае истинным значением сопротивления будет величина не более 5% превышающая минимальную разницу между двумя точками графика.

  3. Трехпроводной метод замера проводится по схеме предыдущей схеме, но перед началом работы следует выбрать режим трехпроводного замера сопротивления.
  4. Способ замера на пробном заземлителе.

    Перед установкой защитного устройства проводится измерение по этому методу, для расчета контура заземления и замера удельного сопротивления.

    Работы выполняются в следующем порядке:

    Перед выполнением проверки, забиваем в грунт пробный заземлитель и оставляем небольшую часть над уровнем земли. Длина штыря должна быть такой же, как и предполагаемый заземлитель контура.

    При помощи мультиметра, определяем сопротивление заземлителя.

    Выполнив расчет, определяемся с размерами стержней и размера треугольника защиты.

    Такой метод в основном используется в небольших устройствах в частном доме.

  5. Компенсационная схема измерения.

    При этом способе, производится обследование промышленных высокоточных приборов. На одной линии с контуром, забиваем штыри в грунт. Основа для проведения замера – это зонд, подключенный к стержням.

    Через первичную обмотку трансформатора, провода, грунт и стержни подается напряжение. На вторичной обмотке наводится электроток. Уравниваем величину напряжений, двигая ручку реохорда. При нулевом значении напряжении, мы получаем величину сопротивления защиты.

  6. Измерение с использованием резистора.

    В этом способе используется калиброванный резистор, через который на устройство защиты подается напряжение прямо от фазного проводника, подключенного в электрощитовой. Мультиметр проверяем, выставив на шкале, замер сопротивления и касаемся шупами друг друга. На экране нулевое значение – это устройство готово к работе.

    Выставляем максимальную величину сопротивления и измеряем его. Напряжение сети нам известно, сопротивление тоже. Производим расчет силы тока, который прошел через заземление. Следует помнить, что такое измерение следует проводить при выключенном проводе зануления от контура.

    На него подается фаза, через калиброванный резистор 46 Ом.

    К преимуществам этого вида замеров относят:

    Отсутствие необходимости забивания длинных стержней в грунт с последующим доставанием после измерения;

    Не приходится растягивать и собирать многометровые электрические провода;

    Для выполнения замеров не требуется занимать большую площадь дворовой территории.

  7. Измерение с применением специальных токовых клещей.

    Выполняя работу по замеру сопротивления, нет необходимости отключения заземляющего проводника. В электрическую сеть подается нагрузка и по проводам проходит электричество. «Обняв» губками клещей проводник, мы не нарушая изоляции и не прекращая работу цепи, получаем необходимое значение сопротивления заземляющего контура, после расчета по закону Ома используя напряжение и силу тока.

Читайте также:  Чем отличается фаза от нуля - советы электрика

В заключение хочется напомнить

Производить измерения приходится на улице, поэтому нельзя работать в сырую и мокрую погоду.

Наиболее целесообразно проводить проверку контура в летом или зимой, но не при очень жаркой и морозной погоде. Специалисты считают – в это время грунт наиболее уплотняется, при этом его удельное сопротивление становится больше.

Измерение сопротивления заземлителей на производстве и многоквартирных домах проводится исходя из графика проверок, по результатам составляется акт приемки, в котором указывается допустимое сопротивление заземляющего устройства и данные замеров заносят в технологический журнал. В акте ставят росписи члены комиссии, и ставится печать организации проводящей проверку.

Выполнив все эти работы, вы можете спокойно и уверенно пользоваться электричеством в вашем доме.

Предыдущая новость Следующая новость

Источник: https://EvoSnab.ru/ustanovka/zemlja/zamer-soprotivlenija-zazemlenija

Контур заземления в частном доме: устройство, расчет, схема, монтаж и проверка

По электротехническим стандартам минувших десятилетий контур заземления в частных домах не был обязательным элементом защиты. Нагрузки на электросети были относительно небольшими, и с утечками тока неплохо справлялись стальные трубы.

Однако с течением времени вместо металлических коммуникаций стали использовать пластиковые и композитные изделия. К тому же в загородных домах появилось большое количество электробытовых приборов: кондиционеры, отопительное оборудование, мощная компьютерная и холодильная техника.

В результате заземлительные контуры стали практически обязательным условием для организации мощной и безопасной электрической системы в частных домах. При желании и наличии базовых знаний по электротехнике создать контур заземления можно своими руками.

к содержанию ↑

Что такое заземлительный контур

Заземление — преднамеренное создание электротехнического соединения с грунтом нетоковедущих элементов электроустановок. Данные элементы оборудования большую часть времени не находятся под напряжением, но могут оказаться под ним.

Контур заземления выполняет следующие функции:

  • защищает электрическое оборудование от скачков напряжения в сети;
  • предохраняет жильцов от удара током;
  • сопротивляется «растеканию» электроэнергии;
  • используется в целях молниезащиты.

Как известно из школьного курса физики, ток всегда распространяется по принципу наименьшего сопротивления. В случае нарушения изоляционного слоя на токоведущих элементах быстро отыскивает участок с наиболее низким сопротивлением. В результате происходит пробой на корпус электробытового прибора, который оказывается под напряжением.

Опасность создавшейся ситуации не только в нарушении нормальной работы техники и вероятном выходе из строя приборов, но и в высокой вероятности удара током человека. Исправить положение призван контур заземления, который распределяет ток между человеком и заземляющим устройством обратно пропорционально их сопротивлениям.

Поскольку сопротивление тела намного выше аналогичного параметра у заземляющего контура, через человека проходит лишь незначительная — неопасная — часть тока, а остаток уходит в грунт. Таким образом, создавая контур заземления, необходимо сделать все так, чтобы добиться минимально возможного уровня сопротивления.

к содержанию ↑

Устройство контура

Устройство заземления — группа проводников, расположенных в грунте по вертикали или горизонтали. Данные проводники (электроды) находятся недалеко от защищаемого объекта.

Электроды расположены на определенной дистанции между собой и соединены металлическими элементами — полосками, трубами или прутками.

Заземлительную конструкцию соединяют с домовым электрощитом при помощи кабеля или металлического проводника.

Глубина нахождения электродов в земле определяется уровнем грунтовых вод и общей влажностью почвы. Чем ближе подземные воды, тем меньшая глубина заложения необходима.

к содержанию ↑

Внутренний и внешний контуры

Для создания системы заземления корпуса электробытовых устройств присоединяют к главной заземляющей шине, чтобы создать внутренний контур. Далее к этому контуру подключают металлические конструкции здания, в том числе водопроводные трубы.

Технология создания выравнивания потенциалов описывается в п.1.7.82 Правил устройства электроустановок. С наружной части здания обустраивается еще один контур — внешний. Его тоже присоединяют к главной шине.

к содержанию ↑

Материалы для заземлителей

Контур заземления включает горизонтальные или вертикальные электроды.

Материалы, из которых не рекомендуется изготавливать заземлители:

  • рифленая арматура;
  • круглая сталь менее чем 10-миллиметрового диаметра.

Рекомендуемые материалы для создания вертикальных заземлителей:

  • уголки 50×50×5 миллиметров;
  • трубы диаметром свыше 32 миллиметров со стенками толщиной от 3,5 миллиметра.

Горизонтальные заземлители изготавливают из таких материалов:

  • стальная проволока с 10-миллиметровым сечением (или больше);
  • стальные полоски (40×4 миллиметра).

Концы уголков или круглых металлических изделий подрезают под углом 30 градусов. Это позволит электроду легче войти в грунт.

к содержанию ↑

Составление расчета

Неопытные мастера часто создают заземление путем проб и ошибок.

Вначале определяются с глубиной грунтовых вод, затем отступают от здания на некоторое расстояние и создают контур в виде треугольника, после чего сваривают электроды друг с другом и делают замер сопротивления в имеющейся конструкции. Если сопротивление превышает нормативы, добавляются новые проводники — до тех пор, пока не удается добиться приемлемых показателей.

Более продвинутый подход предполагает перед тем, как сделать контур заземления, выполнить ряд расчетов. С помощью вычислений определяют число заземлителей, длину соединительных элементов, исходя из уровня сопротивления земли.

В качестве примера рассмотрим установку системы заземления вертикального типа. Вначале устанавливают сопротивление электрода, для чего используют формулу:

Удельное сопротивление грунта по различным составам указано в таблице ниже.

В следующей таблице представлен сезонный климатический коэффициент сопротивления почвы.

Однако если грунт неоднородный, тогда применяют такую формулу:

Формула позволяет определить эквивалентное удельное сопротивление неоднородного грунта.

Если не учитывать сопротивление горизонтального заземлителя, количество электродов можно найти по формуле:

Сопротивление тока горизонтального заземлителя определяют по формуле:

Длина электрода устанавливается так:

Сопротивление вертикальных электродов с учетом горизонтального заземлителя:

Общее число вертикальных электродов определяется по такой формуле:

В таблице ниже представлен коэффициент использования заземлителей.

Параметр «коэффициент использования» указывает на взаимодействие токов в зависимости от местонахождения вертикальных проводников. При параллельном соединении электродов токи оказывают влияние друг на друга. При уменьшении расстояния между проводниками общее сопротивление контура возрастает.

к содержанию ↑

Схема контура

Когда расчеты завершены, подбираем правильное место для установки контура. Выбираем геометрическую фигуру, в соответствии с формой которой будут расположены электроды. Чертим схему контура, учитывая типы применяемых материалов. В схеме указываем количество используемых электродов, соединительной полосы, их длину, сечение, диаметр, глубину установки.

Наиболее оптимальной схемой организации контура считается треугольник. Однако подойдет и любая другая геометрическая форма. На рисунке внизу представлены четыре варианта фигур.

Все схемы заземлительных контуров делят на 2 типа.

к содержанию ↑

Замкнутые

Их преимущество в надежности, поскольку даже при повреждении перемычки между электродами сохраняется еще одна перемычка (с другой стороны). На рисунке ниже показана замкнутая схема в виде треугольника.

к содержанию ↑

Линейные

В этой схеме все электроды находятся на одной линии. Соединения выполняют последовательно. Недостаток способа в том, что при выходе из строя одной из перемычек вся дальнейшая цепочка становится неработоспособной (в соответствии с принципом гирлянды). Схема линейной организации показана на рисунке внизу.

к содержанию ↑

Монтаж контура

Установочные работы состоят из нескольких последовательных этапов.

Подготовка материалов и инструментов

Для выполнения работ понадобятся такие инструменты:

  • сварочный аппарат;
  • болгарка;
  • штыковая лопата;
  • перфоратор;
  • тяжелая кувалда;
  • гаечные ключи.

Необходимые материалы:

  1. Металлический уголок (лучше из нержавейки) размером 50×50 миллиметров и длиной 2 метра. При отсутствии уголка подойдет труба диаметром 32 миллиметра и толщиной стенок 3,5 миллиметра или арматура.
  2. Металлические полосы 40×4 миллиметра. Предназначены для прокладки от системы к дому.
  3. Болты М8 или М10.
  4. Медный проводник толщиной от 6 квадратных миллиметров.

к содержанию ↑

Выбор места

Первый этап работы состоит в том, чтобы определиться, где сделать заземляющий контур. От правильности выбора зависит безопасность системы. Для создания контура нужно подобрать место, где нахождение человека или домашнего животного исключено.

к содержанию ↑

Земляные работы

Необходимо выкопать траншею в виде выбранной геометрической фигуры. Если речь идет о треугольнике, создают фигуру со сторонами 120 сантиметров (проверенная опытом оптимальная дистанция). Рекомендуемая глубина траншеи — 50 – 70 сантиметров. Такая же траншея выкапывается по направлению к электрощиту.

к содержанию ↑

Сборка конструкции

Электроды вбивают в землю на двухметровую глубину. Должны быть видны только верхушки, которые в дальнейшем используют для создания сварочных соединений.

К верхушкам установленных электродов приваривают пластины (полосы). В итоге должен получиться металлический каркас в виде треугольника. Еще одна пластина кладется в траншею, идущую к электрощиту. Эту пластину прихватывают к близлежащей вершине треугольника сваркой или держателем.

Далее присоединяют кабель к пластине. Для этого используют болтовое соединение. Для последующего подключения шины заземления лучше использовать медный проводник. К заземляющей шине присоединяют винт (сваркой) и осуществляют соединение с жилой. К винту подключают медный кабель с помощью пары шайб и гаек.

На этапе изготовления контура следует особое внимание уделять прочности соединений. Сварные швы простукивают молотком, а болтовые соединения подтягивают ключом.

Последний этап монтажных работ — засыпка траншеи грунтом.

к содержанию ↑

Проверка сопротивления в контуре

Еще одна работа, которую предстоит сделать, — проверка контурного сопротивления. Идеальный вариант — наличие специального прибора для тестирования. Название устройства — Ф41023-М1.

Однако стоимость такой техники велика — бывают приборы только у профессионалов. Для проверки разумнее пригласить работников энергетической компании. Специалисты сделают замеры и на основании полученных результатов выдадут технический паспорт, составят протокол на заземляющее устройство.

В домашних условиях (в случае отсутствия прибора и сторонней помощи) сопротивление проверяют более простым способом: подключают к сети 100-ваттную лампочку (или даже мощнее).

Один контакт осветительного устройства подключают к заземляющему контуру, другой — к фазе. Яркий свет указывает на то, что монтаж системы осуществлен правильно. Тусклое свечение свидетельствует о слабом контакте между участками конструкции.

Иными словами, необходимо перепроверить всю систему и найти недостаточно прочные соединения.

Считается, что контур сделан правильно, если подключенный между фазой и заземлением электроприбор мощностью 2 кВт будет работать, а снижение напряжения на указанном участке не превысит 10 Вольт.

По правилам ПУЭ (1.7.101) сопротивление проводника в любой сезон года не должно быть выше 2,4 и 8 Ом при линейных напряжениях для соответственно 660, 380 и 220-вольтовых источников трехфазного тока. То же самое относится к 380, 220 и 127-вольтовым источникам однофазного тока.

к содержанию ↑

Наиболее распространенные ошибки

При создании контура следует избежать ряда ошибок:

  1. Если решено обратиться к электромонтажникам, необходимо особое внимание уделить качеству материалов, которые рабочие собираются использовать. Некоторые подрядчики стремятся удешевить свои услуги путем экономии на электродах, устанавливая проводники с небольшой проводимостью (к примеру, заржавевшую арматуру). Некачественные материалы значительно снижают эффективность защиты или даже делают затею вовсе бессмысленной.
  2. Устройство заземления находится на слишком большом расстоянии от дома.
  3. Установка контура в сухом месте. Вода улучшает проводимость — чтобы система работала эффективно, она должна находиться во влажном месте. Если такое место отсутствует, придется задуматься об искусственном увлажнении.
  4. Объединение заземлительного контура с молниезащитой. Если в распредщите не вмонтировано устройство УЗИП, размыкающее цепь в виде ответной реакции на сверхзаряд, значительный ток из молниеприемника выведет из строя электрическое оборудование.

Контур заземления — важнейшая мера, обеспечивающая безопасность пользования электрическими приборами в частном доме. Если решено выполнить все работы своими руками, необходимо аккуратно придерживаться всех технических правил и рекомендаций, в том числе по технике безопасности. Если уверенности в своих силах недостаточно, лучше обратиться за помощью к специалистам.

Контур заземления в частном доме: устройство, расчет, схема, монтаж и проверка

Источник: https://220.guru/electroprovodka/zazemlenie-molniezashhita/kontur-zazemleniya.html

Как сделать контур заземления, заземление дома, на даче своими руками

нергообеспеченность нашей жизни возрастает с каждым годом. Появляются новые все более мощные бытовые приборы, и все чаще возникают вопросы — как сделать заземление в доме, на даче своими руками и как правильно подключить заземление.

Читайте также:  N это фаза или ноль - советы электрика

Недавно о заземлении электроприборов речь шла разве только на каких-то производственных объектах, магазинах, а сейчас контур заземления далеко не праздная коммуникация для обычного жилого или дачного дома и сделать его можно своими руками.

1. Подключение провода заземления.
2. Контур заземления своими руками.
3.

Советы по устройству контура заземления своими руками.
4. Вопросы по устройству заземления (контура заземления).

Подключение провода заземления

При подключении электрических приборов к каждой розетке, помимо проводов питания (в быту применяется однофазный переменный ток, соответственно провода будут «ноль» и «фаза»), необходимо подвести и третий провод. Если нулевой и фазный провод имеют свое начало на щите учета, то третий провод, провод заземления подключается непосредственно к контуру заземления. Распределительный щит при этом, заземляется в первую очередь.

Если вы интересуетесь, как сделать контур заземления своими руками, то у нас для вас две новости, хорошая — устройство контура заземления работа не сложная, плохая — что бы узнать, правильно ли сделан контур, необходим специальный прибор — омметр, замеряющий сопротивление выполненного изделия. Покупать этот прибор для использования один раз бессмысленно, да и стоит он недешево.

Выходом может послужить обращение в специализированную фирму или к знакомому электрику, как минимум, вам подскажут в каком направлении двигаться.

Или взять на время, у кого-нибудь омметр с соответствующими приспособлениями — обычно это два электрода разносимые на расстояние до 25 метров, между которыми и контуром собственно и делаются замеры.

Произвести замер не сложно, у вас на это уйдет вряд ли больше часа, с учетом времени нужного на изучение инструкции к прибору.

Контур заземления своими руками

Контур заземления в самом простом и обычно достаточном для заземления частного дома, (дачи) варианте, представляет собой три стальных электрода вбитых на глубину полтора — два метра. Между собой эти электроды соединяются на сварке с помощью стальной полосы 40 х 4 мм, в крайнем случае, арматурой диаметром 12 — 14 мм.

К одному из этих стержней — электродов, приваривается болт с гайкой, к которому будет прикрепляться провод заземления. Иногда, если контур выносится на небольшое (три — пять метров) расстояние от дома, соединение контура и щита учета выполняется такой же металлической полосой. В этом случае, полоса обычно крепится к щиту болтом диаметром не менее 10 мм.

При этом к полосе болт должен быть приварен.

Разноска электродов в зависимости от вида грунта может колебаться от метра до трех. В общем виде, чем более грунт насыщен водой, тем ближе можно ставить электроды и тем на меньшую глубину их можно забивать.

Важно

Кстати, что бы не экспериментировать, можно не полениться и сходить в ближайшее энергоуправление и, не заходя в высокие кабинеты, поговорить с дежурными электриками, какие характеристики контуров заземления обычны для вашего региона.

Сейчас в продаже имеются различные типы готовых комплектов для устройства контура заземления. Как правило, это стальные омедненные электроды, собираемые на резьбовых соединениях. Эффективность такого набора высока, но к сожалению и цена еще выше!

Советы по устройству контура заземления своими руками

Есть одна хитрость при устройстве заземления на даче или в загородном доме — даже если грунты с точки зрения устройства заземления выглядят очень плачевно (примером таких грунтов могут служить супеси, мергели, известняки, песчаные грунты, грунты, имеющие низкую влажность), электропроводность их можно повысить. Для этого в месте устройства контура, в грунте сверлят несколько скважин, в которые заливают крепкий соляной раствор.

Устраивая заземление в доме или на даче, иногда электроды не забивают, а закладывают в предварительно пробуренные скважины. В этом случае, после монтажа электродов, заполнить скважины можно грунтом (предпочтительно суглинком), смешанным с солью.

Эти мероприятия достаточно хорошо снижают сопротивления вашего заземляющего контура, но, к сожалению и не менее хорошо содействуют коррозии электродов.

Тем не менее, даже в этом случае контур заземления сделанный своими руками прослужит вам долгие годы, обеспечивая безопасность для вас и ваших близких.

Вопросы по устройству заземления (контура заземления)

Так же на сайте есть информация о том как сделать зануление, установить розетки и выключатели, устроить проводку. Задавайте вопросы в комментариях либо по почте. Присылайте Ваши работы, фотографии, мы опубликуем их на сайте. Заказывайте работы специалистам! Поддерживайте проект! Успехов Вам, Добра Вашему Дому!

Оставляйте ваши советы и комментарии ниже. Подписывайтесь на новостную рассылку. Успехов вам, и добра вашей семье!

Источник: http://ChoNeMuzhik.ru/kak-sdelat-kontur-zazemleniya-zazemlenie-doma-svoimi-rukami.html

Как проверить заземление .Проверить сопротивление контура заземления

Как проверить заземление .Проверить сопротивление контура заземления.

Все мы, так или иначе, знакомы с понятием заземления. Еще со школьной скамьи известно, что это понятие тесно связано с безопасностью и имеет отношение к каждому частному дому.

Мужчины представляют, как должен выглядеть защитный провод в электрическом щитке и даже, возможно, владеют парой способов, как проверить заземление самостоятельно, но даже женщинам знаком «третий» контакт в стандартной трехконтактной розетке.

Устройство проверки сопротивления — мегаомметр

Защите от утечек тока в квартире подлежат электрические щиты, части корпусов и детали бытовой техники, а также металлические предметы, попадание электрического тока на которые довольно вероятно (полотенцесушитель, ванна и т. п.).

Заземление – это целенаправленное соединение с землей частей электроустановки. Оно необходимо для безопасного использования электроприборов в случае несанкционированного попадания напряжения на проводящие ток детали.

Защитный контур состоит из следующих частей:

  • проводник;
  • соединения;
  • заземлитель;
  • грунт вблизи него.

Заземлитель – это металлическая конструкция, часть защитного контура, обеспечивающая контакт его с грунтом вокруг дома. Электрод может быть естественным и искусственным. В первом случае контакт с почвой достигается посредством использования, например, части железобетонной конструкции здания или рельс железных дорог, во втором – отдельно выведенном на фасад проводом.

Можно использовать в качестве заземлителя и трубы подземных водопроводов, но запрещается включать в защитный контур водопроводные трубы в квартире, так как их контакт с землей не является подтвержденным фактом.

Почему проверять заземление важно?

Почти все современные розетки имею три контакта – «ноль» и «фаза» проводником соединены с электростанцией, «земля» — с грунтом. Реализуется это через щиток в квартире, куда выведены соответствующие провода из распределителя дома.

В случае нарушения изоляции и утечки электрического тока избыточное напряжение с металла направляется в землю до срабатывания защитной аппаратуры.

Измерение сопротивления растекания тока контура заземления

Тем не менее, намеренно или по ошибке строители и электрики часто осуществляют схему заземления неверно. Нередко соединения этого контура со временем приходят в негодность, и их эффективность стремится к нулю. Для безопасного использования электрического тока посредством защитной схемы необходимо проверять работоспособность контура заземления, а именно:

  • грунт и электроды в нем;
  • проводник и заземляющая шина;
  • соединения в цепи, так называемые металлосвязи.

В зависимости от назначения помещения проверка заземления осуществляется с разной периодичностью. Для жилых и сопутствующих строений приемлемая регулярность – раз в три года.

Для проверки целостности всех металлосвязей необходимо убедиться в сохранности каждой визуально. Рекомендуется при этом использовать молоточек с изолированной ручкой. О целостности контакта говорит легкое дребезжание проводника. Кроме того, важно убедиться в соответствии нормам сопротивлении каждого металлического соединения с помощью омметра или мультиметром.

Проверка целостности всех металлосвязей с помощью мультиметра

Показания прибора не должны превышать 0,05 Ома. Проверка сопротивления заземления одинаково важна как для квартиры, так и для частного дома. Требования одинаковы.

Проверка грунта

Проверка грунта проводится в наиболее сухое время года, за исключением случаев контроля молниезащиты. Тест проводится с применением специального оборудования. Наибольшую важность эта процедура имеет на этапе проектирования частного дома и его электрической сети.

Если почва на месте строительства не соответствует требованиям безопасности, следует выбрать иное место для строительства или вывести контур заземления в более пригодный грунт.

 Проверка проводников в квартире. Метод 1

В частном доме или квартире должны быть заземлены все металлические предметы от ванны до батарей.

 Также защите подлежат все розетки, но просто наличия третьего контакта в них для этого недостаточно: необходимо проверить, является ли этот контакт частью правильно налаженной схемы заземления. Известно несколько простых способов это сделать.

Один из способов основан на использовании обычной отвертки, тестера, а также изолированного провода с двумя щупами на концах и выглядит следующим образом:

  1. Сначала необходимо проверить, под напряжением ли сама розетка. Обычно это делается тестером, но подойдет и простейший электроприбор, например, настольная лампа, зарядное устройство для мобильного телефона или что-то подобное. Обратите внимание, что вставлять вилку в розетку нужно очень аккуратно, не касаясь провода заземления, так, как еще не известно, является ли он таковым.
  2. Когда вы убедились с работоспособности этой розетки, необходимо отключить ее через устройство защитного отключения (УЗО) в щитке. Не выключая электроприбора, переключите «автомат» – прибор отключится. Теперь с розеткой можно работать.
  3. Вытащите вилку и снимите крышку розетки. Посмотрите, к какому проводу подключен ее контакт заземления. Надеяться, что в электрической цепи вашей квартиры или частного дома реализована схема заземления, можно в том случае, если контакт заземления соединен с отдельным проводом, уходящим в стену. Иначе применен принцип зануления (если контакт заземления соединен с одной из клемм, см. ниже) или этот вопрос оставлен электриками без решения (если контакт заземления вообще не подключен). Соберите розетку, включите УЗО в щитке.
  4. Если выяснилось, что розетка заземлена, необходимо это проверить. Во-первых, тестером или индикаторной отверткой убедитесь, что заземляющий контакт был «кинут» не на фазу. Во-вторых, проверьте, заземлен ли провод, с которым соединен этот контакт. Этой же отверткой или тестером найдите в розетке фазу, уберите с нее палец и поместите на сенсор один из щупов изолированного провода – индикатор отвертки не должен гореть. Второй конец того же провода соедините с заземляющим контактом. В случае правильного заземления лампочка на отвертке сразу же загорится или станет ярче. В противном случае следует вызвать электрика.

 Проверка проводников в квартире. Метод 2

Если есть длинный провод, можно провести более подробную проверку контура заземления. Инструменты те же, что и в предыдущем методе, последовательность действий следующая:

  1. Откройте электрический щит и с помощью индикаторной отвертки убедитесь в отсутствии напряжения в контуре заземления – провод желто-зеленой расцветки.
  2. Найдите «ноль» — провод синего цвета – и подсоедините к нему один из щупов заранее приготовленного проводника. Другим щупом прикоснитесь желто-зеленого провода. Если «автомат» сработал, то контур заземления на входе электрощита в порядке. В этом случае стоит проверить, в каком он состоянии после щита.
  3. Верните рычаг УЗО во взведенное положение. Оставьте один конец изолированного провода на «нуле», а другим поочередно касайтесь розеток и металлических предметов в каждой комнате. Если контур заземления в порядке, каждый раз будет срабатывать «автомат».
  4. Уделите особенное внимание ванной. На высоте примерно 50 см от пола здесь должен находиться бокс СУП – это небольшая пластиковая коробочка, в которой находится металлическая шина и провода. Напряжения здесь быть не должно, убедитесь в этом индикаторной отверткой и подтяните все болтовые соединения.

Щиток распределения электрического тока

Альтернатива заземлению

Зануление – это один из частных видов заземления. Применяется оно в том случае, если частный дом оборудован двухжильным проводником. Например, во время строительства подавляющего большинства хрущевок государственные стандарты регламентировали лишь заземление источников электрического тока.

К сегодняшнему моменту почти все такие схемы заменили более безопасными, но даже если этого не произошло в вашем доме, вы можете использовать зануление. Оно служит для гарантированного срабатывания «автоматов» — это главное отличие зануления от заземления, которое призвано свести риск поражения электрическим током к нулю.

Признаки нарушения контура заземления

Иногда выявить нарушение в электрической цепи можно, не прибегая к использованию специальных приборов. Более того, мы ежедневно сталкиваемся с этими указателями, но зачастую не умеем их распознать.

Схема с несколькими источниками питания и точками заземления

Например, о нарушении контура заземления может говорить бьющийся током корпус стиральной машины или холодильника. Поводом проверить защитную схему электрической цепи может стать пыль, оседающая на батареях отопления особенно толстым слоем. Посторонний шум в наушниках или аудиоколонках – он тоже говорит о том, что электрическая сеть вашего дома не в порядке.

Если что-то из вышеперечисленного вызвало вашу настороженность, настоятельно рекомендуем проверить заземление самостоятельно или обратиться к профессионалам

Источник: http://stavelectro.com/221/548/

Заземление своими руками, делаем контур

Защитное заземление для дачи и дома

Защитное заземление – это преднамеренное электрическое соединение части электроустановки (ЭУ) с заземляющим устройством с целью обеспечения электробезопасности.

Читайте также:  Как подключить генератор к сети дома схема - советы электрика

Назначение защитного заземления – устранение опасности поражения электрическим током в случае прикосновения человека к корпусу электроустановки или другим конструктивным частя, оказавшимся под напряжением.

Принцип действия защитного заземления состоит в снижении до безопасного уровня напряжений прикосновения и шага, обусловленных замыканием на корпус. Этого достигают уменьшением потенциала заземленного оборудования за счет снижения сопротивления заземлителя, а также путем выравнивания потенциала основания, на котором стоит человек.

И заземленного оборудования за счет подъема потенциала основания до уровня, равного или близкого к уровню потенциала заземленного оборудования.

Если говорить человеческим языком, то поскольку ток идет по пути наименьшего сопротивления, то чем меньше будет сопротивление заземляющего устройства, тем лучше, это своеобразная ловушка для электротока. Тоесть минуя вас (сопротивление от 1000 Ом), как источник повышенного сопротивления он пойдет путем наименьшего сопротивления, которым будет заземляющий контур (сопротивление не больше  10 Ом).

Совет

А поскольку при монтаже современной электропроводки, как правило, устанавливаются элементы защиты (автоматические выключатели, дифференциальные автоматические выключатели — УЗО), то при пробое изоляции и замыкании на заземленный корпус сработает защита и линия обесточится.

Вот в принципе для чего служит заземление, которое называют защитным.

В квартирах, как правило, используется защитное зануление, а вот на даче и в частном доме, где такая защита практически не используется из-за отсутствия техусловий. Нам на помощь прейдет защитное заземление.

Защитное заземление. Видео пояснение

Заземление своими руками

Мы можем выполнить заземление своими руками. Для этого выберем самое простое групповое заземляющее устройство с искусственными заземлителями, выполненное в виде равнобедренного треугольника.

Для этого выберем место около дома (дачи) на расстоянии не далее метра (рекомендуется) от стены или цоколя здания и выкопаем траншею в виде равностороннего треугольника глубиной 0,8м и сторонами по 3м.

Под вертикальные заземлители желательно выбурить в углах траншеи три скважины глубиной по три метра. Даже если вы решили забить заземлители кувалдой. То для облегчения работы советую выкопать скважины 1,5 м и заострить с помощью болгарки материал, который будете использовать для вертикальных заземлителей.

Материал для вертикальных заземлителей: труба 50×3 либо сталь круглая сечение 10 мм2 или сталь угловая 50×50×5, три штуки по 3м.

Затем по периметру к установленным вертикальным заземлителям привариваем стальную полосу, которая играет роль горизонтального заземлителя.

Материал для горизонтального заземлителя: сталь полосовая 40×4, длина 9м.

После к смонтированному контуру заземления привариваем заземляющий проводник с приваренным болтом М6 или М8 для крепления провода заземления.

Материал для заземляющего проводника: сталь круглая сечение 6 мм2 или сталь полосовая 40×4.

Обратите внимание

Для уменьшения сопротивления заземляющего устройства (контур заземления) рекомендуется соединить его с естественными заземлителями.

Естественные заземлители, рекомендуемые к использованию:

Проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывчатых газов и смесей;

Обсадные трубы скважин;

Металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;

Металлические шунты гидротехнических сооружений и т.п.

Готовая конструкция со всеми траншеями заполняется однородным грунтом без щебня и строительного мусора.

Контур заземления | Схема

Увеличить рис.

1 – Крепление. Болт М6, М8
2 – Горизонтальный заземлитель. Сталь полосовая 40×4.

3 – Варианты заземляющих электродов (вертикальные заземлители):

а) – Труба 50×3
б) – сталь круглая сечение 10 мм2
в) – Сталь угловая 50×50×5.
4 – Заземляющий проводник.
Сталь круглая сечение 6мм2 или сталь полосовая 40×4.

5 – Медный провод заземления сечение 4мм2.

Алюминиевый провод заземления сечение 6мм2.
6 – Сварной шов
Сопротивление заземления зависит от удельного сопротивления грунта.

Источник: http://masstter.com/elektrika/zashhitnoe-zazemlenie.html

Как проверить заземление: наличие, измерение сопротивления

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление.

Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома.

По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно).

В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть.

Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой.

К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина.

Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Важно

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома.

Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Совет

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

Обратите внимание

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Видео по теме

Источник: https://ProFazu.ru/provodka/bezopasnost-provodka/kak-proverit-zazemlenie.html

Ссылка на основную публикацию
Adblock
detector