Земля в электрике – советы электрика

Как получить электричество из земли и возможно ли это

Вопросами бесплатного получения электроэнергии задавалось множество хороших инженеров, таких как Никола Тесла, так и толпы лжеученных, которых ждало лишь разоблачение.

Результатом их работы является целый ряд схем и способов получения энергии из альтернативных источников. Реально действующих установок или опытов, которые могут нести практическую пользу немного.

В этой статье мы рассмотрим, как можно получить электричество из земли.

Возможно ли это?

Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.

Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.

Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.

Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.

Электричество из нуля и заземлителя

Этот способ подходит для жителей частных домов, если у них есть заземляющий контур. Знаете ли вы, что между заземлителем и нулевым проводом часто наблюдается разность потенциалов в 10-20 Вольт? Это значит, что их можно использовать бесплатно. Повысить их вы можете с помощью трансформатора.

Энергия потребленная таким образом счётчиком учитываться не будет. Такое напряжение можно определить либо вольтметром, либо подключив между этими двумя проводами низковольтную лампочку типа тех, что устанавливают в габариты или приборные панели автомобилей.

Важно! Не перепутайте фазу с нулём – это опасно!

Стоит отметить, что в качестве заземлителя используется отдельное устройство из металлических штырей, вбитых на глубину более 1 метра. Трубопровод в большинстве случаев не даст хорошего результата. Подробнее про заземление в частном доме вы можете узнать из нашей отдельной статьи.

Потенциал между крышей и землей

Этот метод также требует вбить в землю металлический штырь, к нему подключается провод. Второй провод подключается к металлической крыше. Так вы получите пару Вольт. Ток от такой схемы будет ничтожно мал и не факт, что его хватит для включения одного светодиода.

Гальванический элемент

Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.

Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.

Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними.

Обратите внимание

Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи.

Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.

На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.

Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.

Метод получения электричества по Белоусову

Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.

На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:

Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.

Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.

Наверняка вы не знаете:

Источник: https://samelectrik.ru/elektrichestvo-iz-zemli.html

Земля как источник бесплатного электричества

Затраты на электроэнергию растут с каждым повышением тарифов. И если городские жители для уменьшения финансовых трат сокращают лишнее потребление электроэнергии, то владельцы частных домов имеют возможность дополнительно получать электричество из земли.

Получаем бесплатное электричество из земли

Вопрос эффективности

Получение электричества из земли окутано мифами – в Интернет регулярно выкладываются материалы на тему получения бесплатной электроэнергии за счет использования неисчерпаемого потенциала электромагнитного поля планеты.

Однако многочисленные видео, на которых самодельные установки добывают ток из земли и заставляют сиять многоваттные лампочки или крутиться электромоторы, являются мошенническими.

Если бы получение электричества из земли было настолько эффективно, атомная и гидроэнергетика давно ушли бы в прошлое.

Однако бесплатное электричество добыть из земной оболочки вполне реально и сделать это можно своими руками. Правда, полученного тока хватит только на светодиодную подсветку или на то, чтобы не торопясь подзарядить мобильное устройство.

Напряжение из магнитного поля Земли – возможно ли!?

Для получения тока из природной среды на постоянной основе (то есть, исключаем разряды молний), нам необходим проводник и разность потенциалов.

Найти разность потенциалов проще всего в земле, которая объединяет все три среды – твердую, жидкую и газообразную.

По своей структуре грунт представляет собой твердые частички, между которыми присутствуют молекулы воды и пузырьки воздуха.

Важно знать, что элементарной единицей почвы является глинисто-гумусовый комплекс (мицелла), который обладает определенной разностью потенциалов. Внешняя оболочка мицеллы накапливает отрицательный заряд, внутри нее формируется положительный.

Важно

За счет того, что электроотрицательная оболочка мицеллы притягивает из окружающей среды ионы с положительным зарядом, в почве беспрерывно протекают электрохимические и электрические процессы.

Этим почва выгодно отличается от водной и воздушной среды и дает возможность своими руками создать устройство для добычи электроэнергии.

Способ с двумя электродами

Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.

Мощность такого гальванического элемента зависит от целого ряда факторов, включая:

  • сечение и длину электродов;
  • глубину погружения электродов в электролит;
  • концентрацию солей в электролите и его температуру и т.д.

Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа.

Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли.

Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.

Добыча электричества с помощью 2-х стержней

Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.

Способ с нулевым проводом

Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль.

Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт.

Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.

Добыча электричества с помощью нулевого провода

Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.

Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.

Энергия магнитного поля планеты

Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.

Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.

Устройство, получающее электричество из природных источников, должно состоять из следующих элементов:

  • проводник;
  • заземляющий контур, к которому подсоединен проводник;
  • эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).

Схема получения электроэнергии

Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх.

Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.

К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.

Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.

Видео по теме:

Из этого следует

Электроэнергия из земли потенциально может быть добыта, но сегодня нет технологий, которые позволяют сделать это эффективно.

Если есть свой дом с участком, то можно поэкспериментировать с созданием земляной батареи из листов меди и алюминиевой фольги – чертежи и фотографии легко найти в Интернете.

Но практика показывает, что мощность сделанного конденсатора заметно ниже заявленной и конструкция быстро выходит из строя. При этом финансовые затраты на материалы вряд ли когда-либо окупятся.

Источник: https://ProfiTeplo.com/toplivo/25-elektrichestvo-iz-zemli.html

Электричество из земли

Содержание:

В современных условиях постоянно возрастает стоимость энергоносителей, вынуждая многих людей жить в режиме жесткой экономии. В связи с этим все большую популярность приобретают альтернативные источники электроэнергии.

Изобретаются различные способы, в том числе и экзотические. Предпринимаются попытки получить электричество из земли, причем совершенно бесплатно.

Для того чтобы отличить реальность от фантастики, следует внимательно изучить аргументы специалистов и результаты практических опытов, проводимых энтузиастами в данной области.

Атмосферный энергетический потенциал

Атмосфера Земли обладает огромными потенциальными ресурсами. В промежутке между ее поверхностью и границей ионосферы разность потенциалов может достигать 300 тысяч вольт.

Величина напряженности электрического поля непосредственно возле поверхности может доходить до 150 вольт на 1 метр. Это значение постепенно уменьшается с увеличением высоты.

Например, на расстоянии 30 километров напряженность снижается до 1 вольта на метр.

Достигая ионосферы, напряженность электрического поля устремляется к нулю, поскольку проводимость этой среды значительно увеличивается под действием ионизации. Саму ионизацию вызывает солнечное излучение.

Воздействие накопленных электрических зарядов человек регулярно ощущает на себе. Например, покидая автомобиль и касаясь кузова, можно ощутить статический разряд. Он накапливается из-за автомобильных шин, выполняющих функцию изолятора и препятствующих стеканию тока на землю. Через человеческое тело электроэнергия с кузова уходит в землю, сопровождаемая небольшой искрой и легким ударом тока.

Многие мечтали приручить энергию разряда молнии. Однако такое бесплатное электричество сопряжено с огромными техническими трудностями в основном из-за кратковременного и непостоянного действия молнии.

Кроме того, мощный разряд требуется уловить и переправить в специальный накопитель, который еще не изобретен.

Совет

Следует учитывать и тот фактор, что место удара молнии нельзя предсказать заранее, а высокая мощность разряда не поддается контролю и управлению, то есть, нормальное электроснабжение невозможно.

Теоретически добывают электричество с помощью двух металлических листов, размером 1 х 1 м, расположенных по высоте на расстоянии 500 метров друг от друга. При такой расстановке между ними должно возникнуть расчетное напряжение примерно 80 вольт.

Полученная таким образом электростанция на практике оказывается неэффективной и нецелесообразной с учетом конструкций, необходимых для расположения листов. То есть, в настоящее время каких-то действенных способов получения подобной энергии до сих пор не придумано.

Тем не менее, эксперименты в этой области продолжаются.

Известные способы добычи электричества

В первом случае получение электричества из земли осуществляется с помощью двух стержней, изготовленных из разнородных металлов. Данный способ никак не связан с электрическим или магнитным полем Земли.

Стержни используются в качестве гальванической пары, помещенной в солевой раствор.

Если проводить эксперимент в чистом виде, то на концах металлических прутков, погруженных в раствор электролита, образуется разность потенциалов, то есть, электрический ток.

Величина получаемого тока будет разной в зависимости от таких факторов, как размеры электродов, характеристики электролита, глубина закладки и прочее.

По такой же схеме можно получить электричество из земли. Для этой цели берутся стержни из меди и алюминия, которые будут использоваться в качестве гальванической пары.

Их нужно заглубить в землю примерно на 50 см, расположив на расстоянии 20-30 см друг от друга.

Читайте также:  Что такое распределительная коробка - советы электрика

На площадь грунта, расположенную между стержнями, выливается большое количество солевого раствора, и уже через 5-10 минут можно проводить контрольные замеры с помощью электронного вольтметра.

Вольтметр показывает разные значения, максимальный результат составил 3 вольта. Раствор электролита готовится из дистиллированной воды и поваренной соли.

Второй вариант добычи тока также не связана с магнитным полем Земли. Суть заключается в извлечении электричества, стекающего по проводу «земля» во время максимального энергопотребления. В этом процессе участвует и проводник «ноль».

Всем известно, что подача напряжения потребителям осуществляется по фазному и нулевому проводам.

При наличии третьего провода, соединенного с контуром заземления, между ним и нулевым проводником нередко возникает напряжение, иногда доходящее до 15 вольт.

Обратите внимание

Подобное состояние можно определить с помощью лампы накаливания на 12 вольт, подключенной к обоим проводникам. Другим способом зафиксировать невозможно, поскольку приборы учета никак на это не реагируют и ток, идущий от «земли» к нулю не определяют.

Данный способ непригоден для квартиры, поскольку в них как правило отсутствует заземление, способное выполнить свою функцию. Подобные эксперименты хорошо получаются в частных домах с классическим заземляющим контуром.

Схема подключения осуществляется от нулевого проводника к нагрузке и далее – к проводу заземления.

В процессе добычи электричества из земли своими руками, некоторые домашние электрики используют трансформаторы для сглаживания токовых колебаний и затем подключают наиболее оптимальную нагрузку.

Категорически запрещается, чтобы фаза подключалась вместо нулевого проводника, во избежание смертельно опасных ситуаций.

Добыча электроэнергии по методу Белоусова

Большая работа в этой области проделана российским ученым Валерием Белоусовым, занимающимся изучением природы возникновения молний и разработкой эффективной защиты от данного явления. Одновременно он проводит теоретические разработки по вопросам альтернативного получения энергии, в том числе решает задачи, как получить электричество из земли.

Одним из действенных вариантов, отмеченным в научных трудах Белоусова, является так называемое двойное заземление, которое дает реальную возможность решить проблему как добыть из грунта электроэнергию и практически использовать ее в домашних условиях.

Основой данной схемы служит пассивный контур заземления, без каких-либо активных устройств. Он принимает односторонний заряд в первом полупериоде и затем возвращает его обратно, когда фаза начинает переходить во второй полупериод.

Данная схема собирается в следующей последовательности:

  • Вначале на пассивном контуре устанавливается трансформаторная катушка, пропускающая волновые частоты. Блокируя заряды с высокой частотой. При отсутствии трансформатора можно использовать любую катушку, добавив на нее несколько витков изолированного провода.
  • Далее нужно сделать разводку, которая одним концом соединяется с газовой трубой, а другая подключается к конденсатору. Эта система обеспечивает подачу и возвращение волновых колебаний с одновременной блокировкой переменного тока от его попадания в цепь.
  • В разрыв цепи устанавливаются конденсаторы в количестве 2 штук. Они соединяются в общую конструкцию, образуя единый элемент.
  • К обмотке конденсатора нужно подключить светодиодную лампу на 220 вольт. Если схема собрана правильно, лампочка начнет мигать.

Заключение

Все представленные способы позволяют добывать электричество из земли для дома своими руками, однако с практической точки зрения ни один из них не представляет какой-либо ценности. Получаемое напряжение настолько мало, что годится лишь для наглядного подтверждения разрабатываемых теорий.

Источник: https://electric-220.ru/news/ehlektrichestvo_iz_zemli/2018-10-01-1578

Заземление в квартире

В последнее время, в обществе очень сильно вырос интерес к термину заземление. Слово вроде простое и казалось бы понятное, но как правило по факту, толком про его определение и значение никто ничего не знает. Что то связанное с землей и безусловно нужное.  Давайте разбираться, что же такое это заземление и для чего оно предназначено.

В первую очередь заземление защищает  человека от поражения электрическим током,  при его появлении  на отдельных частях электрооборудования, которые в нормальном режиме работы, не должны находиться под напряжением. Немного запутано, но далее мы разберем этот вопрос, для  понимания в полной мере, на конкретном примере.

Все мы слышали про то, что в жилых помещениях обязательно нужно заземлять стиральные машинки. Для чего это нужно делать, есть ли такая необходимость и нужда в действительности?

Важно

Дело в том, что корпус стиральной машинки  изготовлен, как правило, из двух компонентов, пластмассы и металла. Такое  исполнение ее конструкции связано, в основном, с безопасностью потребителя.

Барабан стиральной машинки крутиться с очень большой скоростью, от 400 до 1200 оборотов в минуту, что уже само по себе представляет очень серьезную опасность.

В движение барабан приводит электродвигатель, который представляет еще большую опасность  для жизни и здоровья человека, как механическую так и электрическую.

При работе стиральной машинки электодвигатель выполняет различные операции, заданные программой стирки. Он вращается, ускоряется, тормозит, ожидает, переключатся на реверс. В определенные моменты, при нормальном течении цикла стирки, в двигателе происходят небольшие утечки тока, которые за счет конструктивного исполнения машинки так или иначе попадают на ее корпус.

Разумеется на пластмассовых элементах это не представляет опасности, но вот на металлических, будет присутствовать напряжение небольших значений. Это напряжение считается безопасным для жизни человека,  но достаточным для небольшого потряхивания, значимость которого определяется индивидуальными особенностями каждого человека.

Одного человека  может легонько пощипать, а другого порядочно шарахнуть. Сопротивление тела человека колеблется от  0 до 1000 Ом и зависит от очень многих факторов жизни и здоровья человека.

Все эти процессы протекают при каждой стирке, в нормальном режиме работы машинки, но может произойти сбой в работе элктродвигателя и тогда на корпусе окажется напряжение, равное напряжению в розетке, 220 вольт. А это уже серьезное напряжение, которое считается  смертельным.

Заземление уводит напряжение с корпуса машинки в землю, предотвращая поражение человека электрическим током. Для этого на вилке предусмотрен заземляющий контакт, который соединяется с заземляющим контактом в розетке, если конечно в вашем доме, при проектировании его электрической части, было предусмотрено заземление.

Итак, мы определили, основное назначение заземления.

Теперь, давайте рассмотрим, откуда заземление берется в розетке.

Само по себе заземление представляет собой несколько вбитых в землю металлических уголков, соединенные между собой металлической полосой. Согласно ПУЭ, заземлению должны подвергаться силовые распределительные шкафы и щитки как на производственных, так и на жилых зданиях.

На вводе каждого дома присутствует силовой электрический шкаф, он как правило имеет металлический корпус. Неподалеку от него выполняется конструкция заземления. Шкаф соединяется с конструкцией металлической лентой, с помощью сварки.

Совет

Внутри шкафа имеются специальные заземляющие контакты для присоединения отходящих к потребителям проводов. Они тянуться к этажным щиткам и уже оттуда распределяются по квартирам.

Таким образом  в квартиру заходят три провода фаза, ноль и земля.

В советские времена заземлялись только вводные силовые шкафы, внутри квартир заземлений не было, связано это было с экономией строительных средств. К тому же в те времена еще не было такого количества различного бытового электрооборудования и таких мощностей потребляемых им.

Как определить, есть ли в вашей квартире заземление?

Во первых, нужно посмотреть, имеется ли на установленных у вас розетках дополнительный заземляющий контакт.

На данной фотографии изображена розетка с заземляющими контактами. Они представляют собой два металлический уса, расположенных сверху и снизу розетки, к которым с помощью винтового соединения присоединяется подходящий провод заземления.

Во вторых, в розетке должно быть три провода фаза, ноль, а третий земля.

Проверить рабочеспособность заземляющего провода можно только с помощью мультимметра или вольтметра. Данным прибором нужно произвести несложные замеры. Находим индикатором напряжения фазный провод и далее относительно его замеряем напряжение.

Сначала фаза ноль, затем фаза земля. Если показания разные то земля рабочая, если одинаковые, то скорее всего земляной провод где то соединен с нулем.

Вместо заземления выполнено зануление, что является очень опасным, особенно в случае возникновения перенапряжения.

Итак, в данной статье мы подробно разобрали, что такое заземление, откуда оно берется и как определить его наличие в розетке.

Источник: https://elektrika-svoimi-rykami.com/zazemlenie/zazemlenie-v-kvartire

Три способа получить бесплатное электричество на даче

Три способа получить бесплатное электричество на даче

Наиболее распространённые три способа извлечения электроэнергии из грунта вокруг собственного дома. Наши электрифицированные жилища концентрируют в среде нашего обитания электричество, которое стекает чрез заземление. Почва содержит электричество и электролиты, следовательно, её можно рассматривать как мини-электростанцию. Грех этими обстоятельствами не воспользоваться.

Что касается того обстоятельства, будут ли электрические счётчики ловить эту энергию, отвечаем. Самые распространённые счётчики с одним шунтом (с одним измерительным элементом). Есть также двух шунтовые (с двумя измерительными элементами). С одним шунтом не учитываю ноль – так как измерительный шунт у них расположен на фазе.

rozetkaonline.ru

Нулевой провод и почва

Напряжение в жилые помещения подается через два проводника: фазный и нулевой. При создании третьего – заземлённого проводника между ним и нулевым контактом – возникает напряжение от 10 до 20 В.

Обратите внимание

Этого напряжения достаточно для того, чтобы зажечь пару лампочек. Для подключения к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва.

Данную примитивную схему можно усовершенствовать и получить ток бОльшего напряжения.

Цинковый и медный электроды

Следующий способ получения электричества основан на использовании исключительно почвы. Понадобятся два металлических стрежня – цинковый и медный, которые помещаются в грунт.

Лучше, если это будет грунт в изолированном пространстве. Изоляция необходима, чтобы создать среду с повышенной солёностью. Стержни создадут разницу потенциалов, а грунт станет электролитом.

В самом простом варианте получим напряжение в 3 Вольта.

Разница потенциала между крышей и землёй

Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 Вольта.

Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

Так как провода имеют свое сопротивлении, следовательно, на них будет и «просадка» напряжения, которое мы ловим.

В данном случае используется разность напряжения между нулем сети 220 В и заземлением. Проще говоря, от электростанции до потребителя идут провода – ноль и три фазы. В зависимости от количества абонентов в сети и мощности всей проводки в среднем можно получить приблизительно 3-10 вольт.

Подключив повышающий трансформатор, можно зажечь светодиодную лампу. Напряжение после подключения повышающего трансформатора около 100-220 Вольт. Подойдёт любой трансформатор от радиоприемника, магнитофона или другого аппарата. Желательно на низкое напряжение 3-9 Вольт вторичной обмотки.

Меры безопасности

В цепь между нулем и трансформатором обязательно поставьте предохранитель или автоматический выключатель на 5-10 ампер. Это нужно, чтобы конструкция не сгорела, если вдруг поменяется фаза с нулем.

Важно

Вероятность этого ничтожно мала, но нужно быть готовым ко всему. Вероятнее, что ноль оборвется – и тогда автомат вас выручит. Даже при работе с нулем обязательно отключайте сеть.

Бесплатный свет не стоит оставлять без присмотра.

Готовых устройств для получения электричества из земли в магазинах не найти, но их легко сделать из подручного материала. Однако эксперименты с электричеством опасны. Вы поступите благоразумно, если обратитесь к специалистам (хотя бы на заключительной стадии оценки уровня безопасности системы).

Непотеха Александр

Источник: http://www.repairshome.ru/svet/23143.html

Вам также могут понравиться

профессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 лет

В комментариях к статье был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт .

Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.

Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?

Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!

Ищем фазу

Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.

Отсоединив провода от розетки, обязательно разведите их в разные стороны.

После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки.

Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор.

Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.

В поиске земли

Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт.

Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев.

220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.

Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.

Источник: https://profi.ru/blog/kak-najti-fazu-zemlyu/

Земля в электротехнике

Землей называют точку цепи, электрический потенциал которой считается равным нулю. Такую точку можно выбирать условно. Землей ее называют традиционно, поскольку один из проводников электрических генераторов соединяли с землей при помощи зарытого в землю проводника. Электрикам-профессионалам и тем, кто имеет дело с электричеством необходимо знать, что такое фаза и что такое ноль.

Содержимое

  • 1 Ток в цепи
  • 2 История заземления
  • 3 Начало TN
Читайте также:  Как работает счетчик электроэнергии - советы электрика

Ток в цепи

Электрический ток может протекать только в замкнутом контуре. Электрическая цепь состоит из источника Э. Д. С.

– электродвижущей силы и замыкающего этот источник сопротивления нагрузки, которое может быть очень разветвленным.

Если говорить о бытовой электросети, то здесь источником ЭДС является вторичная обмотка трансформатора ближайшей подстанции, или еще проще, таким источником является ввод в здание.

Один из проводов источника заземлен, этот провод (или шина) называется нейтралью, N, в современной электротехнике. Потенциал этой шины относительно земли равняется нулю, поэтому этот провод называют землей.

Другие три провода называют фазами. Эти провода находится под переменным потенциалом, который меняется от 311 до -311 Вольт относительно земли в сети 220 В 50 Гц (50 раз в секунду). 220 Вольт – это, так называемое, действующее напряжение. Для тока и напряжения синусоидальной формы это среднеквадратичное значение. Это напряжение называют фазным.

Напряжение между двумя фазами называют линейным и оно выше: 380-400 В. Таким образом, размах напряжения в трехфазной сети может достигать величины 760-800 В. Поэтому электроинструмент должен уверенно выдерживать испытательное напряжение не менее 1 кВ = 1000 Вольт.

При замыкании фазы на ноль через какое-либо сопротивление в цепи течет ток. Еще больший ток через то же сопротивление потечет, если оно будет подключено между двумя фазами.

Совет

В трехфазной цепи у конечных потребителей обычно действующее напряжение между фазами 380 В, а фаза и ноль образуют пару, напряжение на которой всегда равно напряжению между фазами, деленному на квадратный корень из числа 3.

Это один из результатов теоретической электротехники. Отсюда и получается известная всем величина 220.

История заземления

В самых старых системах бытового электроснабжения переменного тока, которых теперь уже не найдешь, у конечного потребителя заземления не было (система TT, заземлялась только нейтраль на подстанции, если вторичная обмотка трансформатора соединялось звездой).

Это была однофазная сеть, распределяющаяся ток от понижающей обмотки трансформатора подстанции. Здесь вопрос о том, что такое фаза или нулевой провод даже не возникал – оба провода по отношению к земле были равноправными. Человек мог стоять на земле и держаться за любой из проводов по отдельности. При этом он ничего не чувствовал.

Наиболее старые трансформаторы, питающие однофазную сеть, имели схему, показанную на следующем рисунке. Первичные обмотки соединялись треугольником, нейтрали не было, и заземлялся только корпус трансформатора на месте установки. Теперь таких уже давно нет или они применяются где-то для полевых условий в сельском хозяйстве.

Поражение током происходило, если человек дотрагивался до двух проводов одновременно или, если один из проводов был кем-либо заземлен, а человек дотрагивался до другого.

Старые электроплитки делались с открытой спиралью, люди готовили в металлической посуде и касались токоведущих частей.

Старые телевизоры, например, изготавливались с автотрансформатором ради простоты конструкции и человек, дотрагиваясь до металлического шасси такого аппарата, фактически находился под напряжением сети.

Проблема возникла, когда жилой сектор стал снабжаться промышленным способом подключения (как на первом рисунке). Это произошло потому, что мощность, потребляемая частным сектором, значительно выросла, а в городах он фактически был перемешан с промышленностью (дома-хрущевки).

Обратите внимание

Тогда человек, стоящий на влажном полу, или держащийся за батарею, получал сильное поражение током с вероятностью 50%, в зависимости от того, как он включил вилку электроприбора в розетку. Если фаза тока попадала на шасси такого старого телевизора или радиоприемника, то прикосновение к нему было опасно для жизни.

Промышленность в области ширпотреба быстро перешла на производство нагревательных приборов с закрытым и изолированным нагревательным элементом (ТЭНы), а бытовые радио и телевизионные приборы стали производить исключительно с трансформаторами, где первичная обмотка была полностью изолирована от остальной части прибора, что сделало их безопасными для людей.

Но почему появилось заземление в промышленности? Нам надо рассмотреть и этот вопрос. В принципе, ни для работы потребителей, ни для транспортировки электроэнергии ничего заземлять не требуется.

Трехфазная система переменного тока была принята только потому, что это упрощало конструкцию электродвигателей, так необходимых станкам и машинам в промышленности. По трехфазной схеме в треугольник можно соединять и нагревательные приборы, пример тому – тэны, рассчитанные на 380 В.

Трехфазные системы могут соединяться звездой (первый рисунок). Такое соединение стало очень распространенным, так как оно позволяет без больших проблем питать трехфазные потребители напряжением 380 В, и в то же время, без лишних расходов устроить однофазные сети 220 В. Это хороший способ сэкономить на трансформаторах.

Так появился проводник, который назвали нейтралью (N). Его также называют – нулевой провод. При равном токе по всем фазам ток в нулевом проводе равен нулю. Энергетики стараются распределить нагрузку равномерно. Но это не всегда получается. Вот простой пример. Пусть на заводе был запитан офисный корпус. Для этого была выделена одна фаза.

Затем к этой же фазе подключили жилой дом недалеко. Остальные две фазы оказываются неуравновешены и в нейтрали появляется значительный ток. Это приводит ко всякого рода неопределенностям при измерениях. К тому же, как бы ровно не распределили нагрузку, на корпусах электрооборудования появляются опасные напряжения, если нейтраль оборвана.

Начало TN

В 1913 году немецкий концерн AEG предложил систему с заземленной нейтралью, позже названную TN-C. Здесь электрики стали использовать понятия фаза и ноль.

Позже, в 1930-х годах появилась система TN-S, в которой заземление и нейтраль были разделены.

Это дополнительно увеличивало безопасность, так как теперь, если нулевой провод оборван с очень высокой вероятностью оставался целым другой проводник. Но такая система оказывалась неоправданно дорогой.

Важно

Поэтому, со временем было предложено еще одно решение: нулевой провод от подстанции (PEN – защитная земля и нейтраль) расщеплялся на две части перед вводом в здание.

Одна часть шла как нейтраль N, а другая получила название защитной земли PE. Если происходил обрыв нейтрали то фаза переменного тока, в случае попадания на корпус электрооборудования, пропускала свой ток в землю.

Такая система получила название TN-C-S (заземленная нейтраль комбинированная, с разделением на месте).

Система TN-C-S имеет всего один недостаток – местное заземление должно быть повышенной надежности так как при обрыве нейтрали фазное напряжение, попавшее на корпус, будет заземлено только по цепи PE. Поэтому, при сооружении этой цепи принимают все меры по ее механической прочности и снижению электрического сопротивления.

Для этого используют металлические части зданий, трубопроводы и т.д. Однако все эти части соединяются всего в одной точке при помощи шин. Существует точка (шина) где ноль и земля соединяются, она называется шина уравнивания потенциалов. С ней соединяется и шина контура заземления.

В настоящее время TN-C-S является основной в городах и на предприятиях. В сельской местности еще много систем TT. Это связано с тем, что в сельской местности еще много деревянных домов и TT, при всех прочих недостатках имеет положительную сторону: она безопаснее в отношении грозы.

Источник: https://electriktop.ru/bezopasnost/zemlya-v-elektrotehnike.html

Как провести электричество на участок дачи: советы

Современный человек не может представить свою жизнь без электричества и бытовых приборов, которые от него работают.

Предлагаем рассмотреть, как провести электричество на собственный дачный участок, стоимость подключения к электросетям в России, а также основные правила и нормативы для законного проведения электромонтажных работ.

Требования для электрофикации

Провести электричество на земельный участок своими руками – это довольно кропотливое и сложное задание. Но таким образом вы сможете существенно сэкономить средства.

Сейчас многие компании предлагают свои услуги по подключению дачного участка к электросети, но в таком случае готовьтесь заплатить в два или даже в три раза больше, чем при самостоятельном сборе всех нужных документов и проведении монтажных работ.

Подключение электричества на даче

Перед началом работ по проведению электричества к своему дому или участку земли, нужно получить соответствующее разрешение. Документы на проведения работ по электроснабжению дачного участка представляют собой целый пакет справок и писем. Предлагаем поэтапно изучить, как действовать для подготовки всех нужных документов:

  1. Начать стоит с написания письма в компанию, которая обеспечивает электрификацию в вашем городе или поселке, то есть РЭС. В данном письме вы должны попросить выдать вам технические условия на подключение. Сюда же нужно прикрепить копии документов, согласно которым вы являетесь владельцем дома или участка. Если на участке имеются газопровод, трубы водоснабжения, это все должно быть отображено на плане участка с домом. В зависимости от компании, также могут понадобиться дополнительные справки, их требуют в индивидуальном порядке;
  2. После того, как вы получите техническое задание, в среднем спустя месяц, нужно начинать разрабатывать проект, по которому будет производиться электрификация вашего участка. Без соответствующего образования и опыта не стоит его разрабатывать самостоятельно. Но если вы уверены в своих знаниях, то после составления данного проекта, его в обязательном порядке будет необходимо согласовать в электроснабжающей организации. Чтобы сэкономить свое время, лучше сразу обратиться за помощью в проектное бюро или непосредственно в РЭС. При таком подходе вы можете быть уверены в соблюдении всех норм и стандартов в готовом проекте;Проект электроснабжения: Схема
  3. Теперь, когда у вас на руках готовый проект электроснабжения дачного участка, можно приступать к электромонтажным работам. Обязательно строго следуйте утвержденному проекту, иначе придется переделывать все заново.

Согласно «Закона об энергетике», существует несколько видов подключения, которыми может воспользоваться любой гражданин Российской Федерации, а именно:

  1. Первый вид подключения, ограничивает потребление до 16 кВт;
  2. Вторая вид подключения, ограничивает потребление до 50 кВт;
  3. Третья вид подключения, ограничивает потребление до 160 кВт.

К сожалению, на данный момент последние два вида подключения недоступны для бытового использования, вне зависимости от того, дачный это участок или большой жилой дом, поэтому ориентироваться нужно на первый вид подключения. Независимо от того, какой у вас участок земли или здание в собственности, вы можете подключить нагрузку только до 16 кВт.

Фото – электрификация загородного участка

Цена на проведение такого подключения электроэнергии к вашему участку будет составлять от 550 рублей.

Эту сумма может меняться в большую сторону в зависимости от индивидуального проекта и особенностей конкретного участка. В частности на сумму влияет расстояние до источника электроэнергии.

Если это расстояние превышает 500 метров, то придётся доплачивать некоторую сумму

К тому же, если во время эксплуатации или на стадии монтажных робот, по вашей вине возникло короткое замыкание, из-за перегрузки сети, то вы будете обязаны компенсировать стоимость сгоревшего оборудования и подводящих проводов. На практике, чем больше город или поселок – тем более высокой является вероятность перегрузки сети, больше всего этому подвержены участки в Подмосковье и пригороде Санкт-Петербурга.

Предела цен для подключения домов за городом не существует. Некоторые известные монтажные организации предлагают вам быстрое подключение к электросети, со всеми сопутствующими документами, за 300 или 500 тысяч рублей по специальной программе.

Многие владельцы дачных участков без электричества, которые получили разрешение на подведение линии электроснабжения к своему владению, также упоминают про возможные подводные камни. В частности, это видно из текста переписки с энергоснабжающей компанией:

«Подключение участка под номером N произведется в течение шести месяцев, но только в случае ремонта существующей или постройки новой понижающей трансформаторной подстанции».

Это примерный текст, который означает, что вам проведут электричество только тогда, когда будет производиться ремонтные работы на определенной распределительной станции.

Многие, подписавшие подобный документ, ждут подключение годами, поэтому будьте внимательны.

Фото – подвод электричества к участку

Стоит помнить еще один очень важный момент: в некоторых населенных пунктах электричество лимитировано, то есть его можно тратить только в пределах установленной нормы. В большинстве случаев она достигает 3-6 киловатт в час. Этого вполне достаточно для снабжения небольшого дома, но не хватит для работы многочисленных силовых электроприборов одновременно.

Видео: проведение электричества и других инженерных коммуникаций в деревянном доме

Самостоятельная электрофикация дачного участка

Если вы получили на руки все справки, проекты и разрешения, то теперь осталось только подключить электричество к вашему дачному участку. Мы рекомендуем выполнять работу самостоятельно лишь в том случае, если ранее вы уже проводили подобные работы или если ваша специальность связана с электромонтажом.

Чтобы самостоятельно провести электроэнергию на свой участок, вам понадобится:

  1. Силовые провода и кабели;
  2. Асбестовая пластина или металлический лист, либо другое не горючие основание для крепления распределительного щита учета на столбе. Материалы подбираются в зависимости от конкретных условий монтажа;
  3. Распределительный щит;Фото – электрический щиток
  4. Автоматические выключатели и УЗО;
  5. Счетчик электроэнергии;
  6. Специальные крепления для проводов, монтажный инструмент, измерительные приборы и т.д.

Из всего этого перечня особо внимательно нужно выбирать автоматические выключатели и УЗО. От них зависит не только работоспособность всей техники на участке и в доме, но и безопасность вас и вашей семьи.

Нужно подобрать устройство по максимальному току потребления, ведь резкие перепады напряжения в дачных поселках и небольших деревеньках – это практически обычное дело.

Перед тем, как покупать провода для электрификации своего дачного участка, нужно рассчитать потребную мощность будущих электроприборов. Для монтажа между столбов и подключение от столба к строению, в большинстве случаев достаточно алюминиевого провода с сечением 6 мм².

Но если вы планируете подключать у себя какие либо силовые приборы: бетономешалку, циркулярную пилу, сварочный аппарат или водонагреватель, то лучше взять провод сечением 16 мм².

Помните, для питания таких электроприборов нужна отдельная линия от распределительного щита, во избежание перегрузки и перепадов напряжения.

Чтобы определить необходимую длину проводов, нужно произвести расчеты по заранее составленному плану. Для запаса к получившейся длине добавляем 5%.

После расчета и покупки всех необходимых материалов и инструментов, можно приступать к монтажу столбов с проводами и распределительного щита.

Совет

Для этого необходимо установить столбы для проводов. Они устанавливаются согласно плану, от места где будет производиться подключение линии к центральному электроснабжению и до вашего дачного участка.

Читайте также:  Ремонт электронного балласта для люминесцентных ламп - советы электрика

Фото – столб для крепления щитка

После монтажа проводов, приступаем к установке распределительного щита учета, он должен монтироваться на несгораемую поверхность.

Если у вас установлены деревянные столбы, то необходимо защитить место установки асбестовой или металлической пластиной.

По технике безопасности, последний столб, на котором расположен щит, должен находиться на расстоянии не менее 10 метров от любых построек.

Установку и непосредственное подключение счетчика электроэнергии в распределительном щите должен выполнять квалифицированный электромонтер, являющийся сотрудником электроснабжающей организации. По завершению он пломбирует щит учета и дает гарантию на свою работу.

Самостоятельное вмешательство в схему учета электроэнергии преследуется по закону. А налагаемый при этом штраф, составляет сумму, превышающую потребление электроэнергии за несколько месяцев.

Независимо от того, электрифицируется садовый домик или проводится электричество к жилому дому, нужно обязательно сделать контур защитного заземления. Помимо этого в каждом подсобном помещении нужно установить отдельные автоматические выключатели и УЗО, которые защитят линию от перегрузок, а человека от поражения электрическим током.

После проведения всех монтажных робот перед тем как подать напряжение тщательно проверяется правильность сборки схемы и отсутствие возможных коротких замыканий. Конечным этапом электроснабжения является подача напряжение и контроль его наличия на всех участках схемы согласно утвержденному проекту.

Источник: https://www.asutpp.ru/kak-provesti-elektrichestvo-na-uchastok.html

Практические советы по монтажу электрики своими руками

Сразу оговорюсь – электромонтаж нужно предоставить квалифицированному специалисту. Сэкономить конечно не получится, однако вы получите надежную проводку и, что не маловажно, будете уверены в безопасности ее эксплуатации.

Статья предназначена для тех Сам-самычей, которым экономия важнее надежности и безопасности, а может вы и квалифицированным работникам не доверяете.

Так или иначе, если вы решили выполнить электрификацию дома, квартиры, или произвести незначительный ремонт в электрике, статья будет вам полезна.

С чего начать

Первым делом нужно определиться где какие приборы будут подключаться, где будут светильники и выключатели, определить примерную мощность приборов, которые будут включаться в те или иные розетки.

Далее следует распределить все электроточки по зонам, на каждую зону будет приходиться отдельный автомат.

В некоторых случаях, когда нагрузка слишком большая, например электроплита, следует выводить отдельную линию с отдельным автоматом.

Пример проекта розеток и освещения, для более детального просмотра нажмите на картинку.

Разберем пример с розетками: стандартная розетка рассчитана на ток не более 16 А (мощность = 220*16 = 3520 ват = 3.

5 квт) из этого следует что рекомендуется данную зону нагружать на автомат не более 16 А, даже если к этой зоне будет подключено много розеток.

Объясню почему: допустим вы решили повесить 5 розеток на одну зону, следовательно, это один автомат, складывать максимальные мощности всех 5-ти розеток для расчета защитного автомата в корне не верно.

Обратите внимание

Ведь это в идеале приборы от всех 5-ти розеток будут потреблять энергию поровну, на практике одновременно может работать всего одна розетка, однако если автомат рассчитан на 5-ть нагрузок по 16 А, становится очевидно, что одна розетка просто сгорит от такой перегрузки (при условии что к ней будет подключен соответствующий прибор).

Другими словами – при проектировании электрики все составляющие компоненты электроцепи (проводка, розетки, клемники и т. д.) должны по отдельности выдерживать ток, на который рассчитан автомат, защищающий данную зону (ветку). Это важный момент, который следует хорошенько запомнить!

Как подобрать сечение провода

Сразу оговорюсь – далее речь пойдет про медный провод, алюминиевые провода уже не используют для проводки.

В магазинах все еще продается проводка с алюминиевыми жилами, она предназначена для ремонта старой алюминиевой проводки, новые медные провода нельзя скручивать с алюминиевыми старыми жилами.

Однако, соединения разных металлов можно выполнить клемниками, тогда возможно произвести частичный ремонт старой проводки новым медным кабелем. Замечу, что хоронить клемники нельзя.

Из приведенной ниже таблицы можно определить нужное нам сечение провода исходя из нужного нам тока или мощности. Или наоборот – определить, выдержит ли выбранный нами провод длительную нагрузку нужных нам приборов.

Однако, есть простой способ не забивать голову цифрами и пользоваться простым правилом: освещение тянуть проводами, сечением 1.5 мм, а розетки проводом 2.5 мм. Допускается разводить розетки и проводом 1.

5 мм, но при условии, что провод соответствует стандарту ГОСТ, а не ТУ. Однако в настоящее время качественный провод, соответствующий ГОСТ-у большая редкость, поэтому розетки все-таки надежнее подключать проводом 2.

5 мм.

Конечно, если сравнить выше написанное и таблицу, станет ясно, остается большой запас по мощности и на самом деле приведенные сечения можно использовать при более высоких токах.

Важно

Но здесь идет расчет на то, что проводка будет эксплуатироваться не одно десятилетие, за это время будут происходить различные аварийные ситуации, автоматы не всегда будут срабатывать в нужный момент, а коротких замыканий, созданных бытовыми приборами и вовсе не счесть.

А проводка останется целой и невредимой! А тот факт, что по вине худой проводки может произойти пожар, окончательно должен вас убедить что запас он как в той поговорке … в попе не мешается.

Как разделить электрику на зоны/ветки

Нужно прикинуть примерную мощность приборов и разделить зоны так, чтобы суммарная мощность одной зоны, которая защищена отдельным автоматом не превышала 3500 ватт (это 3.5 киловатта или 16 ампер при напряжении 220 вольт). Если имеются приборы потребляющие больший ток/мощность, то нужна отдельная ветка с отдельным автоматом (например электроплита).

Чтобы не путаться в мощности и токах, рекомендую все расчеты сводить в ток. Как узнать номинальный ток, потребляемый прибором? Если потребляемый ток не всегда указан на приборе или в его документации, то его мощность указанна обязательно.

Чтобы узнать какой ток потребляет прибор в амперах, нужно его мощность в ваттах поделить на рабочее напряжение в вольтах. Например: на чайнике написано 2200 Вт (2.

2 кВт) делим мощность на рабочее напряжение 220 вольт – 2200/220=10 А, таков ток, потребляемый чайником от сети.

Зачастую бывают такие ситуации: например на кухне планируется несколько мощных приборов – микроволновка, чайник и стиральная машина, не нужно даже начинать считать, чтобы понять что суммарная мощность выходит за пределы 3.5 кВт. Больше чем 2.

5 мм2 сечение провода вроде решает проблему, но тогда нарушается вышеизложенное правило: тогда придется ставить более мощный автомат и стандартные розетки 16 А не подходят.

Можно раскидать данные розетки на разные ветки, которые не имеют в перспективе других мощных приборов.

Совет

Однако такое решение не всегда практично, может быть в квартире планируется всего 2 ветки на свет и розетки и отдельная на плиту, тянуть отдельную линию на чайник как-то накладно. Решение просто – можно сделать все три розетки от одной линии, защищенной автоматом 16 А, все чем вы рискуете – защитный автомат будет иногда срабатывать при исправных приборах.

Ведь указанные приборы обычно потребляют мощности меньшие, чем заявлены на их маркировке, скачки тока происходят лишь во время включения нагревательных элементов. Из практики – у меня частенько работала такая связка: водонагреватель (2.2 кВт) чайник и стиральная машинка, и при всех включенных приборах автомат еще некоторое время думал и только потом отключался.

Вообще, как правило, электроприборы со стандартной вилкой имеют номинальную мощность не более 2200 Вт, более мощные комплектуются специальными вилками/розетками и требуют отдельной ветки. В общем проектировать электрику следует так, чтобы на одну ветку приходилось не более двух таких мощных приборов.

Если же так сложилось, что вопреки всем советам вы запитали от одной ветки много таких приборов, не стоит ставить более мощный автомат, в случае частых его срабатываний следует заменить автомат на менее чувствительный к кратковременным скачкам тока и будет вам счастье, и правил электромонтажа вы не нарушите.

Как подключить УЗО/дифференциальный автомат

В начале давайте определимся чем отличается УЗО (устройство защитного отключения) от дифавтомата. УЗО предназначено для отключения электричества при утечке тока. Это значит, что оно сработает, например, если холодильник или стиральная машина будут не исправны и на корпус будет попадать фаза.

Кстати, в зависимости от наличия или отсутствия заземления, момент срабатывания при неисправной стиралке или другого прибора может произойти во время удара током человека, но об этом немного ниже.

УЗО рассчитано на срабатывание не только от неисправных приборов, но и при поражении человека электрическим током, каким-то образом коснувшегося оголенной фазы.

Это не значит, что с установленным УЗО можно пихать пальцы в розетку, во-первых, вы все равно получите удар тока, прежде чем устройство сработает , во-вторых, для срабатывания нужно чтобы ток из фазы через человека уходил куда угодно, но не через ноль .

В общем УЗО предназначено в первую очередь для защиты человека, происходит это путем сравнивания тока на фазе и нуле, и если разница превысит максимальный ток утечки, прибор отключает цепь. От перегрузки и короткого замыкания УЗО не защитит! Поэтому УЗО используется вместе с защитным автоматом. Дифференциальный автомат это УЗО и защитный автомат в одном корпусе, вот и все различие.

Подключается УЗО к фазе и к нулю, как на рисунке. Сверху устройства находится вход, а снизу выход. И на выходе, и на входе контакты промаркированы “N” и “1” – это ноль и фаза соответственно. Вход УЗО следует подключать к фазе через защитный автомат номиналом не ниже, чем у УЗО. Дифавтомат не требует подключения дополнительного автомата.

Выход УЗО/дифавтомата подключается к нагрузке или группе нагрузок. Обратите внимание: ноль, подключенный к выходу УЗО/дифавтомата не должен нигде соединяться с нулевыми проводниками других веток или заземлением! Это обязательное условие для корректной работы устройства.

К фазе это тоже относится, но самая распространенная ошибка с нулем.

Обратите внимание

Важнейшими характеристиками УЗО являются ток утечки и время срабатывания, у дифавтомата к этим данным еще добавляется ток срабатывания по перегрузке, как у обычного автомата. Ток утечки обозначается значком дельта и значением тока.

Для защиты электрической ветки, питающей, например санузел ток утечки не должен превышать 30 мА, для отдельного прибора достаточно 10 мА. Ток утечки приборов, защищающих всю квартиру или дом может быть 100 мА и более.

Если защита всего дома от утечек тока не так часто практикуется, то защита санузлов и влажных помещений крайне желательна.

Вот мы и подошли к такой важной теме как заземление. Важна она не только потому, что предназначена защищать человека, но и потому, что не правильно сделанное заземление не только не будет защищать от поражения током, а может само являться причиной этого поражения! В частности, мы затронем такой вопрос, когда в домовом щите шины земля попросту нет.

Где требуется заземление

Существует масса приборов, в которых попросту нет такого контакта – телевизоры, зарядные, различные приборы с пластиковыми корпусами. Например у чайника, контакт земли на вилке имеется, но если корпус его пластмассовый, земля не актуальна.

Однако существует масса приборов с металлическими корпусами, от компьютера до стиральной машины, такие приборы требуют заземляющего контакта в розетке. Другое дело если в электрощите не имеется заземляющего провода, если бы все приборы были пластиковыми и не имели контакта с водой, это не было бы проблемой.

Но холодильники, микроволновки, а особенно стиральные машины и водонагреватели никто не отменял.

Как подключить водонагреватель/стиральную машину, если нет заземления

Так уж вышло, что защитное заземление в домовых электросетях стали делать лишь в 90х, дома, построенные ранее и в которых не проводился капитальный ремонт электрооборудования, не имеют заземления .

В таких домах имеется зануление, как правило, зануляются электроплиты, а остальные розетки имеют двухжильную проводку. Зануление это провод подсоединенный к нулевой рабочей шине в щите и дотянутый до плиты.

В настоящее время очень часто при подключении стиральной машины или водонагревателя люди сталкиваются с противоречивым мнением – можно ли занулить данные приборы в подъездном щите? Тема актуальна на протяжении многих лет, и долго еще профессиональные электрики будут срать друг на друга на форумах, доказывая истину. Естественно у человека, далекого от электрики, подобные вопросы будут вызывать затруднения, уж если электрики не могут дать однозначного ответа, то кому верить?

Давайте разберемся как поступать категорически нельзя. Нельзя использовать в качестве заземления трубы водяных и отопительных стояков, арматуру в стенах и т. д.

Это аксиома! Таким поступком вы рискуете не только собой, но и своими соседями. Ни в коем случае нельзя соединять заземлительный вывод прибора с рабочим нулем в розетке или распределительной коробке.

При обгорании нуля, а это не редкость, корпуса приборов, даже полностью исправных, окажутся под фазой!

Теперь о подключении заземляющего провода в подъездном щите к рабочему нулю, минуя счетчик и автоматы – таким образом вы страхуетесь от обрыва нуля в самой квартире, однако не застрахованы от обгорания общедомового или подъездного нуля, принцип аварии тот же, только более масштабный. Зануление такого плана возможно только профессиональным электриком, который установит дополнительные защитные приборы. Кстати, УЗО подключенное при таком занулении не спасет при обгорании общедомового нуля!

Важно

Как же быть? Самый более – менее безопасный вариант, временно повешать на нужную ветку УЗО с током утечки не более 30мА (зачастую достаточно и 10 мА, но может быть много срабатываний) и не подключать никуда заземление. Эта мера не защитит от “пощипований” током и прежде чем отключится УЗО, вас немного ударит током (естественно если на корпус будет пробивать фаза), а далее нужно искать грамотного электрика.

Статья получилась довольно большой, поэтому данную тему мы продолжим в следующей статье.

Источник: https://yserogo.ru/remont/elektromontazh.html

Ссылка на основную публикацию
Adblock
detector