Система tn c – советы электрика

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление.

Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ).

В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Обратите внимание

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия.

Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель.

Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство.

Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.

7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).

Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» – комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S.

Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора.

При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.

2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией.

Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.

На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников.

Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом.

Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода.

При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.

Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Важно

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века.

При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость.

Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C.

Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали.

Который при входе в здание разветвляется на «PE» – ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN.

Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N».

На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений.

Совет

В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг.

При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков.

Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT.

Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т».

Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю.

Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование.

При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное – жизнь человека.

Смотрите также:

  • Вебинары с ведущими экспертами отрасли
  • Все для расчетов заземления и молниезащиты
  • Полезные материалы: статьи, рекомендации, примеры

Источник: https://zandz.com/ru/biblioteka/sistemy_zazemlenieya_TNS_TNC_TNCS_TT_IT.html

Что такое система заземления tn, и какие системы еще бывают

Люди каждый день в быту пользуются различными электрическими приборами, начиная от кофеварки и фена, заканчивая холодильником и стиральной машиной.

Они живут в многоэтажных домах, ездят на работу в метро и даже не подозревают, сколько усилий сделано разработчиками этих приборов и устройств, чтобы они могли без страха за свою жизнь пользоваться этими дарами цивилизации.

Сейчас любое устройство, здание, сооружение проверяется на электробезопасность.

При проектировании любых электроустановок независимо от их назначения, главным условием является их безопасная и нормальная работа, что обеспечивается безупречным проектом и безошибочным устройством заземления. Существуют системы заземления tn, tt и другие. Основным документом, определяющим работу разработчиков систем заземления, являются Правила устройства электроустановок.

Категории

Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.

Все заземлители делятся на две категории: естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.

Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным.

Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик.

В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.

Читайте также:  Соединение проводов с помощью сиз - советы электрика

Виды искусственного заземления

Если рассматривать по функциональности, то существует защитное и рабочее заземления. Первое обеспечивает безопасность людей при использовании электроприборов, а второе – нормальную работу электроустановок. По типу заземления нулевого провода делятся на системы с изолированной (IT) и глухозаземленной (TN) нейтралью. На рисунке показаны все типы заземления.

В системе IT нулевой провод генератора электроэнергии не имеет гальванической связи с заземлением, а токопроводящие части намеренно заземляются. Допускается между заземлителем и нейтралью установка дугообразующего устройства или приборов с большим внутренним сопротивлением.

Система заземления TN самая распространенная. В ней нулевой провод генератора электроэнергии глухо заземлен, а токопроводящие части с помощью специальных шин присоединяются к нему.

Она подразделяется еще на четыре подвида:

  • систему заземления TN-С, в ней рабочий и защитный нулевые провода представляют собой один проводник от источника до потребителя энергии;
  • систему TN-S, в ней рабочий и защитный нулевые провода представляют собой два проводника от источника до потребителя энергии;
  • систему заземления TN C S, в ней рабочий и защитный нулевые проводники представляют собой один проводник, начиная от генератора электроэнергии, затем на каком-то участке разделяются на два;
  • систему ТТ, в ней нулевой провод генератора электроэнергии глухо заземлен, а открытые токопроводящие части потребителя электроэнергии заземлены через собственное заземление, которое никак не связано с нулевым проводом генератора электроэнергии.

Первый символ аббревиатуры сообщает, в каком состоянии относительно земляного слоя находится нулевой провод производителя электроэнергии (генератора, трансформатора).

Т – заземленный нулевой проводник.

I — изолированный нулевой проводник.

Второй символ информирует о состоянии токопроводящих частей относительно заземления.

Т — токопроводящие части заземлены, состояние нулевого провода генератора электроэнергии значения не имеет;

N — токопроводящие части присоединены к глухозаземленному нулевому проводнику источника электропитания.

Обратите внимание

Символ после N показывают, как соотносятся рабочий и защитный нулевые проводники.

S (separated)— разделены рабочий (N) и защитный (PE) нулевые проводники.
С (combined)— объединены в (PEN) проводе N и PE проводники.

Системы с глухозаземлённым нулевым проводом

Система зануления TN C впервые была применена компанией AEG в начале ХХ века. Классическим ее видом является обычная схема электроснабжения с тремя фазными и одним нулевым проводом. Он одновременно является функциональным (N) и защитным (PE) «нолем», наглухо заземленным.

С ним соединяют все корпуса и доступные токопроводящие части устройств. Самая большая проблема у системы возникает при обрыве нулевого провода, на токоведущих частях корпусов устройств появляется линейное напряжение в 1,73 раза больше фазного.

При нормальной работе, попадание фазного провода на корпус приведет к короткому замыканию, но, благодаря специальным устройствам, произойдет мгновенное отключение, что оградит людей от удара током.

В странах СНГ схема заземления TN C используется в наружном освещении и в зданиях, построенных до девяностых годов ХХ века.

Система TN-S

Самая надежная и безопасная система заземления TN-S была создана перед Второй мировой войной. Главная ее особенность заключается в раздельном использовании рабочего и защитного нулевого проводников, начиная от генератора электроэнергии.

При трехфазном электроснабжении используются пять проводов, однофазном — три. Электробезопасность обеспечивается за счет практического дублирования защитного проводника. Независимо от места обрыва N проводника, система оставалась относительно безопасной.

Позже, благодаря этому способу заземления были разработаны дифференциальные автоматы.

ГОСТ Р50571 и новая редакция ПУЭ предписывает при электроснабжении новых объектов, при капитальном ремонте зданий использовать систему зануления TN-S. Но ее распространению мешает высокая стоимость и то, что вся российская энергетика работает по четырехпроводной системе электроснабжения.

Система TN-C-S

Компромиссной стала система заземления TN-C-S, которая использовала преимущества TN-S, но по стоимости стала значительно дешевле. Все дело в том, что с трансформатора подача электроэнергии происходит с применением объединенного нуля «PEN», наглухо заземленного.

При входе на объект PEN провод разделяется на защитный и рабочий нуль, но расщепление возможно и раньше ввода в сооружение. При обрыве провода PEN на участке генерирующая станция — здание, на корпусах электроустановок, появится опасное напряжение.

Поэтому в системе заземления TN C S нормами предусмотрены особые меры защиты проводника PEN.

Система TT

Самый экономичный способ доставки электроэнергии на селе по воздушным линиям.

Использование системы TN-S, как наиболее безопасной, обходится дорого, у систем заземления TN-C и TN-C-S сложно обеспечить надежную защиту нулевого проводника PEN.

Поэтому часто используется система TT, с заземленным нулевым проводом у источника электропитания. При трехфазном электроснабжении система работает по четырехпроводной схеме с одним нулевым проводником.

Около приемника электроэнергии делается местное заземление, к которому присоединяют токоведущие части и корпуса устройств.

Важно

В случае обрыва нулевого провода, а вне города это нередкое явление, на корпусе устройства не возникает опасного напряжения благодаря местному заземлению.

В городской черте система заземления TT используется при электроснабжении временных сооружений, при этом обязательно должны быть установлены устройства защитного отключения и проведена грозозащита.

Система IT

Это система, в которой имеется полностью изолированный от земли нулевой провод или соединенный с ней через высокоомное сопротивление, а также наличие у потребителя электроэнергии собственного защитного заземления. Все токопроводящие части оборудования при этом надежно заземляются.

Система IT применяется в электроустановках зданий с повышенными требованиями безопасности, например, в больницах для медицинского оборудования, в шахтах, карьерах.

Мобильные электростанции тоже используют изолированную нейтраль, что позволяет использовать подключенные к ним электроприборы без заземления. Раньше система IT широко использовалась и в энергоснабжении деревянных домов.

В Советском Союзе сети напряжения 127/220 В долгое время использовались с изолированным нулевым проводом, это было связано с отсутствием заземления в домах. С началом панельного строительства от нее отказались.

Сами заземляющие устройства прежде выглядели как набор трехметровых стальных стержней вкопанных в землю на расстоянии нескольких метров, вершины которых соединялись стальной полосой.

Получившийся огромный контактный элемент проверялся на сопротивление, если превышал нормированную величину, то вкапывались дополнительные стержни, пока не получали необходимый результат. Недостатком его были большие занимаемые площади и недостаточная стойкость к коррозии.

Современные заземляющие устройства лишены этих недостатков. Они строятся на основе омедненных стальных стержней, которые могут соединяться между собой при помощи латунных муфт и забиваться на глубину до 50 м. По верху соединяются медной полосой.

За счет такой конструкции могут устанавливаться на любых грунтах, не требуют земляных работ и занимают мало площади.

Совет

Вот такими заземляющими устройствами и системами заземления обеспечивается электробезопасность людей.

Источник: https://EvoSnab.ru/ustanovka/zemlja/sistema-zazemlenija-tn

Системы заземления TN,TT,TN-C,TN-S,TN-C-S и IT

Основные понятия в теме типы заземления

Чтобы разобраться с системами заземления определюсь с основными понятиями, которые будут использоваться в этой статье. Вы, конечно, можете прочитать пункты 1.7.3-1.7.7 главы 7,ПУЭ, если любите первоисточники. Здесь я не буду переписывать ПУЭ, просто расскажу, что нужно понимать под отдельными словами в этой статье.

Прежде всего, что такое заземление эклектической сети, по сути

Заземление электрической сети это соединение всех открытых для прикосновения токопроводящих частей электроприборов (например, корпусов) и доступной арматуры (например, металлические водопроводные трубы) с землей (в буквальном смысле).

Зачем нужно заземление?

Земля, вернее проводящая часть земли, имеет нулевой электрический потенциал в любой своей точке. Части электроприборов, по которым в нормальном режиме не протекает электрический ток, совершенно безопасны для человека.

Другая ситуация в аварийной ситуации при которой по корпусу бытового прибора начинает течь ток. В такой аварийной ситуации прикосновение к корпусу будет представлять серьезную опасность для человека.

Именно для защиты человека от поражения электрическим током, а также для защиты от последствий электроаварий (например, пожара) и предназначено ЗАЗЕМЛЕНИЕ.

Почему заземление защищает человека?

Как я сказал, проводящая часть Земли имеет нулевой электрический потенциал.

Если на стороне проводника соединенного с землей возникает электрический потенциал (возникает аварийная ситуация), то он будет стремиться сравняться с нулевым потенциалом земли и ток потечет по направлению земли.

Специальный электроприбор, отвечающий за аварийное отключение электропитания, также соединен с землей. Между аварийным проводником и устройством защиты возникает электрическая цепь, которая и отключает аварийный участок от электропитания.

Но эта схема защиты сработает, если все элементы электросети соединены с землей. Причем говоря обо всех элементах сети, имеется в виду элементы сети от генераторов подающих электропитания до простой розетки в квартире.

При этом. Схема, по которой сделано заземление основного генератора (источника) электропитания электросети должна совпадать со всеми схемами заземления этой сети. Вернее наоборот. Схемы заземления сети должны соответствовать схеме заземления источника электропитания.

Разделяют три основные системы заземления электросети TN;TT;IT

Система заземления TN (открытые части соединены с нейтралью)

При системе заземления TN одна точка источника питания электрической сети соединяется с землей при помощи заземляющего электрода и заземляющих проводников. Заземляющий электрод имеет непосредственный контакт с землей. При системе заземления TN открытые проводящие части соединяются с нейтралью, а нейтраль соединяется с землей.

Система TN-C

Если нейтраль объединена с защитными проводами (землей) на всем протяжении электросети, такая система называется и обозначается TN-C.

Система TN-S

Если нейтраль и защитный проводники разделены на всем протяжении электросети, а объединяются только у источника питания, такая система называется TN-S.

Система заземления TN-C-S

Система заземления, при которой разрешено применение и системы заземления TN-C (4-х/2-х проводной) и системы заземления TN-S (5-ти/3-х проводной).

Важно! При системе заземления TN-C-S, запрещено использовать систему TN-C ниже системы TN-S,так как любой обрыв нейтрали в системе TN-C приведет к обрыву защитного провода после системы TN-S.(смотри рисунок)

Система заземления TT-заземленная нейтраль

При системе заземления ТТ средняя точка источника питания соединяется с землей. Все проводящие части электросети соединяются с землей через заземляющий электрод отличный от электрода источника питания. При этом зоны растекания обоих электродов могут пересекаться.

Система заземления IT –изолированная нейтраль

При системе заземления IT полностью изолирована для всей электросети или сопротивление соединения с землей стремится к бесконечности.

На этом все! Относитесь к электрике с почтением!

©Elesant.ru

Другие статьи раздела: Электрические сети

Источник: https://elesant.ru/zashchita-elektrosetej/zashchita-elektricheskikh-setej/sistemy-zazemlenija-tn-tt-tnc-tns-it

Можно ли применять зануление в системе TN-C * Удобный дом

Можно ли применять зануление в системе tn-c ? Применять зануление в системе TN-C не только можно, но и строго обязательно. Без зануления система TN-C превращается в систему TT.

В системах TN-C, TN-C-S  и TN-S одновременно применяются и зануление и заземление. Если исключить из любой из этих систем зануление и оставить  только заземление, то в любом случае получится система TT.

Буквенное обозначение системы TN говорит о том что в этой системе применяется зануление. T – нейтраль источника питания заземлена, N – корпуса электроприборов занулены.

Последующие буквы обозначают то, каким образом произведено зануление. Буква C – с помощью одного комбинированного проводника. Буква S – с помощью отдельного нулевого защитного проводника. Буквы C-S – говорят о том что комбинированный проводник C разделяется на два отдельных проводника (рабочий ноль и защитный ноль) на вводе в здание.

Можно ли соединять нулевой провод с корпусом электроприбора в бытовых условиях?

Не нужно путать вопрос “Можно ли применять зануление в системе TN-C?” с вопросом “Можно ли соединять нулевой провод с корпусом электроприбора в бытовых условиях?” 

Читайте также:  Как подключить 220 к 380 - советы электрика

Система TN-C запрещена для применения однофазных сетях. А также запрещена в быту хоть в однофазных, хоть в трехфазных сетях (ПУЭ 7.1.13). Питание электроприемников жилых, общественных, административных и бытовых зданий должно выполняться от сети 380/220 В с системой заземления TN-S или TN-C-S. 

Другими словами в однофазной сети, а также трехфазной бытовой сети нулевой проводник является только рабочим. Он не может применяться одновременно и для защиты. Рабочий нулевой проводник категорически нельзя соединять с корпусами электроприборов.

Система TN-C может применяться только в трехфазных сетях. Только на заводах, в различных производственных зданиях, а также в многоэтажных жилых зданиях, но только до ввода в квартиру. В жилых и общественных зданиях может применяться до ближайшей реконструкции. Если в жилом здании проводится ремонт электросетей, то электромонтажники должны перевести сеть на систему TN-S или TN-C-S.

Применение системы TN-C в однофазных сетях и быту опасно. При обрыве комбинированного нулевого проводника на корпусах электроприборов появится напряжение опасное для жизни. Причем ни УЗО, ни автоматические выключатели, ни реле напряжения не отключат сеть в подобной ситуации.

На производстве обрыв комбинированного нулевого проводника маловероятен. В качестве такого проводника используется толстые стальные полосы на сварных соединениях. Использовать подобный метод в быту никто не станет.

На заводах и фабриках круглосуточно находятся бригады дежурных электриков. Они планово проводят осмотр и техническое обслуживание электрооборудования. В быту же о том что нулевой провод отгорел и корпуса электроприборов находятся под напряжением не узнают до удара электротоком.

Какая система заземления в жилых домах и квартирах?

Нужно понимать что в квартирах и домах чаще всего встречается не система TN-C, а система “Никакая”. В системе TN-C нужно применять защитное зануление, а в никакой системе применять зануление нельзя.

Если в этажный электрощит многоквартирного дома не приходит отдельный защитный проводник PE, то в квартирах этого этажа нет никакой системы защитного заземления. Это не система TN-C. Система TN-C распространяется на электросеть только до трехфазного этажного щита.

Вести защитный проводник в квартиру прикрепив его окончание к корпусу щита нельзя. Потому что это будет второй нулевой рабочий проводник, а не нулевой защитный. Даже если этот проводник соединить на отдельной изолированной от корпуса щита шине. Соединять нулевой рабочий проводник с защитной клеммой в розетке нельзя.

Соединять нулевой рабочий проводник с корпусами электроприборов нельзя.

Обратите внимание

Если в частном доме нет защитного заземления соединенного с  главной заземляющей шиной, то в этом доме нет никакой системы защитного заземления. Это не система TN-C – это никакая система.

Под защитным заземлением понимается металлическая конструкция из труб, уголков или иных металлических частей, погруженная в землю на достаточную глубину и имеющая нужное сопротивление.

Сопротивление измеряется специальным прибором, а не с помощью омметра или даже мегомметра.

В качестве исключения в быту может применяться система TT (ПУЭ 1.7.59.), если условия электробезопастности не позволяют применять TN-S или TN-C-S. Но после устранения причин мешающих электробезопасности необходимо перейти на систему TN-S или TN-C-S.

Вы можете прочитать записи на похожие темы в рубрике – Электромонтаж

Ваш Удобный дом

Источник: https://www.natrix-el.kz/ehlektrosnabzhenie-doma/ehlektromontazh/mozhno-li-primenyat-zanulenie-v-sisteme-tn-c.html

Системы заземления для современных электроустановок. ⋆ Руководство электрика

Нормальное функционирование и безопасность различных электрических сетей, установок, электрооборудования промышленного и бытового назначения во многом зависит от точного проектирования и грамотного выполнения системы заземления.

Этот технологический метод представляет собой комплекс устройств, в котором часть электроцепи или оборудования намеренно соединяется с грунтом. Именно он защищает человека от поражения током при контакте с электрическими приборами.

Уровень качества системы заземления характеризуется ее сопротивлением. Этот показатель определяет силу противодействия току, поступающему в почву через заземлитель. На величину сопротивления влияют многие факторы: материалы заземляющих устройств, тип конструкции, особенности грунта.

Какое бывает заземление

Нормативными документами разрешено использовать несколько типов систем заземления:

  1. TN (TN-C, TN-S, TN-C-S).
  2. TT.
  3. IT.

Названия обозначаются сочетанием первых букв нескольких слов, позаимствованных из французского и английского языка. Они имеют следующие обозначения, подходящие в данном случае:

  • земля (T);
  • нейтраль (N);
  • изолировать (I);
  • комбинированный (C);
  • раздельный (S).

Первая буква в названии определяет виды заземления источника энергии. Вторая — указывает на потребителя. По третьей букве судят о типе обустройства нолей — рабочего и защитного проводника.

Система TN и ее разновидности

В схемах TN при подключении нолей используется нейтраль источника, наглухо соединенная с заземлителем. Все элементы сети, проводящие электроэнергию, подключаются к общему нолю, который соединен с нейтралью.

Существует несколько типов нулевых проводников:

  • функциональный (N);
  • защитный (PE);
  • комбинация проводников (PEN).

Система заземления нейтрали TN имеет несколько подвидов, отличающихся типом подключения N и PE.

Подсистема TN-C

Схема заземления TN-C

В TN-C проводники с защитной и рабочей функцией совмещены в PEN по всей длине. Производится так называемое защитное зануление. Классическая схема состоит из трех фазных и одного нулевого провода. К нейтрали, заземленной наглухо, подключаются открытые токопроводящие металлические элементы с помощью дополнительных нолей.

Может Вас заинтересует статья  Какой кабель выбрать для розеток

Плюсы:

  • простой монтаж;
  • экономичность, за счет выполнения двух функций одним проводом.

Минусы:

  • при нарушении целостности проводника потребители могут оказаться незащищенными.

Подобные типы заземления устарели и не используются в новых постройках. Их можно встретить в старых домах или в уличном освещении.

Подсистема TN-S

Схема заземления TN-S

TN-S более современна и безопасна. Нулевые проводники в ней разделены. Каждый из них выполняет свое предназначение: рабочее или же защитное.

N и PE разделяются на подстанции, ноли подключаются через глухо заземленную нейтраль энергоисточника. Трехфазное напряжение подается посредством пяти проводов, в однофазном участвует три провода.

Состояние контура заземления в данной системе не нуждается в контроле.

Плюсы:

  • высокая безопасность;
  • эффективная защита от поражения электричеством;
  • отсутствие помех на силовых линиях пользователей.

Минусы:

TN-S применяется в новых зданиях и телекоммуникационных сетях.

Подcистема TN-C-S

Схема заземления TN-C-S

В TN-C-S проводник PEN в определенном месте (обычно в главном распределительном щите при входе в здание) разветвляется на отдельные N и PE проводники. В целях бесперебойной работы в системе устанавливается дополнительный заземлитель после места разделения. При однофазном питании электроснабжение выполняется с помощью кабеля из трех жил. При трехфазном питании – из пяти жил.

Плюсы:

  • простой монтаж конструкции;
  • высокий уровень безопасности;
  • выгодное соотношение «цена/качество».

Минусы:

  • высокая степень риска электротравм при нарушении изоляции PEN проводника вне здания.

Эта система защитного заземления считается одной из самых оптимальных для жилых зданий.

Система TT

Схема заземления TТ

Системы заземления TT актуальны при несоответствующих условиях безопасности для предыдущих видов. Специалисты рекомендуют применять их в случае, когда техническое состояние воздушных линий электропередач далеко от идеала.

Данной конструкцией предусмотрено независимое заземление защитного и рабочего нолей через отдельные контуры. Связь между проводниками запрещена. Такой подход помогает изолировать от электросетей все металлические поверхности, способные проводить ток.

Плюсы:

  • независимость от разных повреждений линии питания.

Минусы:

  • необходимость в качественном повторном заземлении, реализации технических мер для подавления скачков напряжения по время грозы;
  • обязательность монтажа прибора, выполняющего защитное отключение.

Такие виды заземления целесообразны для небольших жилых помещений, металлических блок-контейнеров, строительных бытовок.

Система IT

Схема заземления IТ

IT отличается изолированной нейтралью. Она не соединяется с землей, или же заземляется через специальное устройство, обладающее большим сопротивлением. Открытые токопроводящие детали электрических установок заземляются через отдельные контуры. Конструкция практически исключает недостатки в виде появления нежелательных вихревых токов либо магнитных полей.

Существует два вида схем IT. В стандартном варианте проводник N отсутствует. Во второй схеме он предусмотрен, а вместе с ним применяются устройства контроля изоляции. В итоге к потребителю может приходить три или четыре (3 фазы + рабочий ноль) проводника от трансформаторной подстанции.

Плюсы:

  • повышенная безопасность для потребителя;
  • максимальная защита оборудования;
  • простой монтаж;
  • надежная защита от межфазных замыканий при работе с большими токами.

Минусы:

  • сложная схема контроля токов утечки, требующая вмешательств потребителя.

IT используется в лабораториях, промышленных предприятиях, больницах.

Технологии устройства заземления

Контур заземления устанавливается по одной из двух технологий:

  • Традиционная.
  • Модульно-штыревая.

Традиционная технология

По правилам традиционной технологии заземление выполняется из черного металла. В этих целях могут быть использованы полоски, трубы, уголки.

Для начала выбирается подходящее для оборудования заземляющего контура место в почве. Затем на расстоянии 5 м друг от друга вкапываются в грунт металлические электроды (на глубину около 3 м в зависимости от объекта).

Далее они собираются в общий контур с помощью сварки и стальной полоски.

Из-за трудоемкой установки и коррозии, свойственной металлу, сейчас чаще применяется более современная модульная технология.

Модульная технология

Для обустройства модульно-штыревой заземляющей технологии применяются металлические стержни с медным покрытием. Они вбиваются в грунт вертикально на глубину до 1 м.

По краям нарезается резьба, которую тоже покрывают медью. Металлические элементы конструкции соединяют латунными муфтами. Для соединения горизонтальных и вертикальных частей берут латунные зажимы.

Все детали обрабатываются специальной защитной пастой от коррозии.

Модульно-штыревая технология не нуждается в трудоемком монтаже и сварке. Она подходит для любого типа грунта и имеет больший срок службы, чем традиционная.

Технически совершенная система заземления здания обеспечивает надежную и безопасную работу электроприборов для потребителя. Во многих случаях правильное заземление может спасти жизнь человека.

Источник: http://ElectroManual.ru/sistemy-zazemleniya-dlya-sovremennyx-elektroustanovok/

Системы защитного заземления TNC, TNCS, TNS, TT, IT

Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364
Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT

TNC – Нейтраль и PE («земля») объединены вместе везде в системе в единую щину PEN.
Neutral and PE (protected earth conductor) are combined throughout the system.

TNS – Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе. PE приходит на объект от трансформатора отдельно и может быть соединена с местной землёй.

Neutral is earthed at the transformer but is not bonded to earth or the PE elsewhere. PE is carried to the site from the transformer and bonded to site earth.

TNCS – Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США – разновидность данного. Нейтраль заземлена на трансформаторе.

TNCS splits the combined PEN into a separate neutral and PE at service entry (U.S. practice is a variation of this). The neutral is earthed at the transformer.

TT – Нейтраль заземлена на трансформаторе. Местная Земля – PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.

Neutral is earthed at the transformer. The PE originates at site but is not bonded to the neutral. There is no interconnection between PE and transformer earth.

IT – Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).

The transformer is unearthed (or earthed through high impedance). The PE originates at site but is not bonded to a service conductor; no conductor in this system is designated as ‘neutral’ (standard IT system).

Читайте также:  Емкость при последовательном соединении - советы электрика

Разновидности IT системы:

  • A) проводник «N / Нейтраль» отсутствует в системе (стандартная счистема IT).
  • B) проводник «N / Нейтраль» есть в системе.

Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).

Для обоих случаев возможны разновидности:

  • I) Местная Земля – PE (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
  • II) Местная Земля – PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора. Эти Земли могут быть как соединены так и не соединены.

Главное требование системы IT – незаземлённая или импедансно-заземлённая нейтраль трансформатора.

Термины / сокращения:

  • T – Terra / Земля (лат. terra, франц. terre)
  • N – Neutral / Нейтраль
  • C – Combined / Совмещённый
  • S – Separated / Отдельный
  • I – Isolated / Изолированный (франц. terre isolee)
  • PE – Protected Earth conductor / Защищённая шина Земли
  • PEN – Protected Earth + Neutral conductor / единая шина объединяющая Нейтраль (N) и Землю (PE)

Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ

Трём системам заземления дан официальный статус посредством стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.

Системы TN

Основные принципы схемы TN:

  • Нейтраль трансформатора заземлена, поэтому корпуса нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.
  • Нагрузка не имеет местного заземления.

Существующие варианты схемы TN:

  • TNC – «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
  • TNS – «Земля» и нейтраль разъединены (PE и N) (S = Separate).
  • TNCS = TNC+TNS Объединённые вначале «Земля» и нейтраль затем разъединяются (CS = Combined then Separate). То-есть TNC преобразуется в TNS.

Система TNS не может существовать перед системой TNC.

Система TNС (TN-C). Нарушение изоляции в системе TNC

Общие замечания:

В системе TNC, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Однако этого может привести к возникновению пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.

https://www.youtube.com/watch?v=6ZUjfR1VUkE

Несмотря на опасность система продолжает использоваться в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

Рис.1. Нарушение изоляции в системе TNC

Возможные варианты:

  • Человек коснулся фазного проводника и «Земли» одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус (на «Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).

Система TNS (TN-S). Нарушение изоляции в системе TNS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата.

Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Важно

Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.

Степень безопасности TNS выше чем TNC по следующим причинам (П1, П2):

  • П1) защитные автоматы в TNS при срабатывании могут размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
  • П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть служит заземлением. В то время как в системе TNC защитный проводник выполняет сразу две функции:  заземления и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как на заземляющем проводнике возникают наводки (помехи), вызванные текущим по нему току нагрузки.

Подробные замечания:

Рис.2. Нарушение изоляции в системе TNS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Система TNСS (TN-C-S). Нарушение изоляции в системе TNСS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата.

Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Система защиты имеет средний уровень безопасности, так как установив УЗО можно добиться достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.

Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

Рис.3. Нарушение изоляции в системе TNCS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Система TT

Основные принципы схемы TT:

  • Нейтраль трансформатора заземлена.
  • «Земля» / корпус нагрузки также заземлены.
  • «Земля» трансформатора не связана кабелем с землёй нагрузки / потребителя (PE).

Нарушение изоляции в системе TT

Общие замечания:

Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, безопасность такая же как в TNS с УЗО. Если это сопротивление высокое, безопасность системы снижается, так как УЗО может не сработать.

Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.

Подробные замечания:

Рис.4. Нарушение изоляции в системе TT

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Показана стандартная схема ТТ с УЗО. Ток пробоя (нарушения) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.

Защита обеспечена Устройством защитного отключения (УЗО): повреждённый блок / участок отключается устройством УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL:

IL > ΔI

IL = UL / RL – ток пробоя / утечки / leakage

Условие надёжной работы УЗО:

R (CD)<\p>

Источник: https://www.xn--80aacyeau1asblh.xn--p1ai/reference/tech-articles/234-protection-systems

Какое заземление для частного дома лучше: TN-C-S или TT?

Согласно документации «Правила устройства электроустановок» (ПУЭ), одной из основных мер по обеспечению электробезопасности является защитное заземление. Его основное назначение заключается в создании условий, в которых электрический прибор будет моментально отключен защитными устройствами, если он будет подвержен опасной неисправности.

Для некоторых сложных электрических приборов (водонагреватель, газовый котел) заземление крайне необходимо. Оно позволит обеспечить их нормальное функционирование. В частности, образующийся при движении газа и скапливающийся на корпусе газового котла электростатический заряд, способен вывести из строя электронную систему управления котлов.

Это повлечет за собой ее последующий дорогостоящий ремонт.

Устройство заземления в частном доме должно быть произведено в строгом соответствии с нормативными документами. Особое внимание следует уделить соблюдению двух основных норм.

Основные нормы и правила проведения заземления частного дома

Первая профильная норма — выбор материала и конструкции заземлителя. Материал и минимальное сечение, прокладываемых в грунт проводников, выбираются таким образом, чтобы обеспечить необходимую коррозионную стойкость и стабильность характеристик.

Совет

Вторая — сопротивление растекания электрического тока, которое в состоянии обеспечить заземляющее устройство. Для величины сопротивления заземления в частном доме существует два норматива: не более десяти Ом (если планируется установка газового котла) и не больше тридцати Ом (в остальных случаях).

Каким количеством материала будет достигнуто это значение зависит от удельного сопротивления грунта. Низкое удельное сопротивление имеют сильно и среднеувлажненные грунты (чернозем, глина, мокрый песок и др.).

Высокое удельное сопротивление имеют проблемные грунты (сухой песок, гравий, щебень, мерзлый грунт).

Система TT

TT — нейтраль источника глухо заземлена, а открытые проводящие части электроустановки присоединены к заземлителю, электрически независимому от заземлителя нейтрали источника питания. До недавнего времени система заземления ТТ  была запрещена в нашей стране.

Сегодня, эта система остается достаточно востребованной и используется для мобильных зданий, таких как вагончики, ларьки, павильоны,дома и др. Допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены.

Такая система требует высококачественного повторного заземления, с высокими требованиями к сопротивлению. Самым эффективным заземлением в этом случае, является модульно-штыревое заземление.

Во всех перечисленных системах рекомендуется для безопасности применять УЗО ( Устройство защитного отключения).

Чем отличается система заземления TN-C-S от системы TT?

Основное отличие систем в том, что провод PEN (система TT) не несет в себе функцию защитного. Таким же образом, от заземленной нейтрали подстанции проходит провод до ввода в строение (PEN).

Но в системе TN-C-S он совмещает в себе две функции (нулевого N и защитного PE) и делится на два провода (PE и N).

При этом роль заземляющего играет защитный (PE), а роль рабочего отводится нулевому проводнику (N).

Обратите внимание

Что же касается системы заземления TT, то PE (который также отходит от подстанции) организуется автономно, с помощью отдельного заземлителя, и с нулевым проводником (N) вообще не соединяется.

Преимущества и недостатки системы TN-C-S

Достоинства подсистемы TN-С-S.

Подсистема TN-C-S рекомендована для широкого применения . Технически достаточно легко выполнима. При переходе с подсистемы TN-C требует несложной модернизации.

Практика проведения электромонтажных работ показывает, что чаще в качестве основной системы заземления в электрических сетях выбирается система TN-C-S.

Такая практическая значимость именно этой системы обусловлена ее основным структурным преимуществом: при возникновении определенной ситуации, которая влечет за собой замыкание фазного проводника на корпус (повреждение изоляции), получается аналогия короткого замыкания.

Результатом такой ситуации послужит возникновение большого показателя тока, что приведет к моментальному срабатыванию защитных устройств (автоматов защиты). В системе заземления TT подобных высоких показателей тока не будет, следовательно, защита от ударного тока короткого замыкания срабатывает не так часто, как это необходимо.

Недостатки подсистемы TN-С-S.

Нуждается в модернизации стояков в подъездах. При обрыве PEN проводника электроприборы могут оказаться под опасным потенциалом.

Основным недостатком системы TN-C-S выступает то, что, при возникновении обрыва или другого механического повреждение провода по пути его прокладки от подстанции до здания, все конструкции или корпуса (которые соединены с проводником PE) моментально оказываются под сильнейшим напряжением (относительно земли). При этом, если человек дотронется до конструкции в таком ее состоянии, он может получить очень сильный удар током, который опасен для его жизни.

Источник: http://elektrikvspb.ru/lichnyie/kakoe-zazemlenie-dlya-chastnogo-doma-luchshe-tn-c-s-ili-tt.html

Ссылка на основную публикацию
Adblock
detector