Ремонт эпра для люминесцентных ламп своими руками – советы электрика

Ремонт люминесцентных ламп своими руками

Все больше и больше в эксплуатации у населения становится компактных люминесцентных ламп (КЛЛ), в обиходе называемых энергосберегающими.

Но, поскольку рынок наводнен относительно дешевой продукцией низкого качества, некоторые экземпляры не отрабатывают заявленный производителем срок службы.

В итоге экономия получается призрачной: затраченные на покупку лампы деньги не оправдывают себя. Даже правильная эксплуатация КЛЛ не дает гарантии, что она прослужит долго.

Неисправные КЛЛ — многие из них можно восстановить

Иногда поломанная лампа подлежит ремонту. Детали для замены можно взять из другой КЛЛ или купить в магазине радиотоваров. Это окажется дешевле, чем приобретать новую лампу.

Устройство и принцип работы компактных люминесцентных ламп

Для успешной починки любого устройства нужно знать его конструкцию и принцип действия. Компактная люминесцентная лампа состоит из частей, указанных на рисунке.

Устройство КЛЛ

  1. Стеклянная трубка с парами ртути и инертным газом внутри.
  2. Люминофор на внутренней поверхности трубки.
  3. Электронный балласт.
  4. Корпус
  5. Цоколь.

По краям трубки расположены электроды, похожие на нити лампы накаливания. В момент запуска через них проходит ток, разогревая материал, которым они покрыты.

Свойства покрытия таковы, что при разогреве из него в окружающее пространство начинают эмиссировать свободные электроны.

Затем схема электронного балласта, называемого еще электронным пускорегулирующим аппаратом (ЭПРА), формирует между крайними электродами импульс высокого напряжения.

В трубке возникает ток за счет ранее появившихся при разогреве электронов. При движении они бомбардируют атомы инертного газа в трубке, превращая их в ионы.

Обратите внимание

Наличие положительно и отрицательно заряженных частиц в трубке обеспечивает возможность прохождения по ней тока.

Как только происходит пробой газового промежутка в трубке с образованием достаточного количества носителей электрического тока, напряжение на ее концах снижается.

При столкновении движущихся заряженных частиц с атомами ртути последние излучают свет в ультрафиолетовом спектре. Покрытие из люминофора преобразует свет в видимое излучение.

Электронный балласт выполняет следующие функции:

  • обеспечивает прохождение тока через электроды в момент для их разогрева;
  • формирует импульс для пробоя газового промежутка колбы;
  • поддерживает напряжение на электродах колбы, необходимое для устойчивого разряда в ней.

Схема балласта сначала превращает переменное напряжение питающей сети в постоянное. Это необходимо для работы электронной схемы лампы. Затем при помощи автогенератора формируется переменное напряжение частотой десятков тысяч герц. За счет этого уменьшаются габаритные размеры ЭПРА и коэффициент пульсаций светового потока лампы.

Типовая схема КЛЛ

Выпрямитель состоит из четырех диодов, включенных по мостовой схеме. В цепь питания включается обрывной резистор или предохранитель. В качестве сглаживающего фильтра применяется электролитический конденсатор в паре с дросселем.

Дополнительно последовательно со схемой выпрямителя устанавливается ограничительный резистор. Его назначение – уменьшить бросок тока, возникающий при подключении питания, когда конденсатор фильтра выпрямителя еще разряжен. В дешевых изделиях ограничительный резистор и дроссель сглаживающего фильтра отсутствуют.

Запуск происходит за счет терморезистора, включенного между электродами лампы. В холодном состоянии его сопротивление невелико. После подачи напряжения по нему протекает ток, разогревающий и электроды, и сам терморезистор.

При нагревании сопротивление его увеличивается, ток через цепь накала уменьшается до минимальной величины. Он остается таким до тех пор, пока лампу не отключат и резистор не остынет. После этого схема вновь готова к запуску.

Теперь рассмотрим порядок отыскания неисправностей в КЛЛ и методы их устранения.

Внешний осмотр люминесцентной лампы

Для начала лампу нужно разобрать. Для этого рассоединяем половинки корпуса, вставив плоскую отвертку в пазы его соединительного шва. Действуя отверткой как рычагом и передвигая ее по шву, добиваемся раскрытия защелок, скрепляющих половинки между собой.

КЛЛ в разобранном виде

Затем осматриваем печатную плату и детали, установленные на ней. Проверяем качество пайки – выводы деталей не должны шевелиться в плате при покачивании. Осматриваем дорожки на целостность, проверяем надежность пайки проводов к контактам колбы.

На деталях и плате не должно быть следов копоти от замыканий, а вздувшийся электролитический конденсатор требует замены.

Диагностика нитей накаливания

О возможном обрыве нитей накаливания свидетельствует потемнение внутренней поверхности колбы в местах их расположения. Для диагностики измеряется сопротивление нитей мультиметром – оно составляет около 10 Ом. Если одна из нитей оборвана, лампу можно заставить работать, припаяв параллельно контактам нити резистор с сопротивлением 10 Ом.

Старт КЛЛ с таким резистором возможен за счет электронов, выделяемых вблизи исправного электрода. Однако запускаться она будет хуже, так как носителей на этом этапе станет меньше, а их движение – эффективным только при определенном направлении питающего трубку тока.

Можно сразу же проверить терморезистор в цепи накала. Его сопротивление в холодном состоянии должно соответствовать указанному на корпусе.

Если оборваны обе нити, лампу придется утилизировать. Но электронные компоненты выбрасывать не стоит, они еще пригодятся для ремонта других ламп.

Неисправности выпрямителя

Диагностика электронной схемы лампы начинается с проверки целостности предохранителя (обрывного резистора). Найти его не сложно – он последовательно соединен с одним из проводов цоколя и расположен недалеко от диодов выпрямителя. Предохранитель не перегорает сам по себе, его обрыв – следствие короткого замыкания в защищаемой цепи.

В этом же районе расположен и ограничительный резистор. Его сопротивление невелико – несколько единиц Ом. Но иногда на плате вместо него производители устанавливают перемычку.

Диоды выпрямителя проверяются мультиметром по очереди, для чего один из выводов каждого из них отпаивается от платы.

Для проверки мультиметр устанавливают в режим измерения сопротивления и касаются его щупами диода, меняя полярность их подключения.

Важно

В одном направлении диод проводит ток, и его сопротивление равно сотням Ом, а в другом – бесконечности. Если это не так или в обратном направлении диод имеет некоторое сопротивление, то его меняют.

Электролитический конденсатор фильтра питания проверяется мультиметром: щупы подключаются к выводам в соответствии с указанной на корпусе полярностью.

При коротком замыкании между выводами, отсутствии зарядного тока или не желании его уменьшаться до бесконечности, конденсатор меняется. Однако гарантированный способ убедиться в его исправности – выпаять и временно заменить новым.

Рабочее напряжение конденсатора – 400 В, напряжения питания мультиметра недостаточно для его объективной проверки.

При наличии в схеме фильтра питания дросселя его тоже нужно проверить на целостность.

Поиск неисправностей в схеме генератора

Приоритетное направление поиска – полупроводниковые элементы. В схеме генератора импульсов КЛЛ это транзисторы, диоды и динистор.

Динистор – это полупроводниковый прибор, который имеет большое сопротивление в обоих направлениях до тех пор, пока напряжение на его выводах не превысит величину порогового значения.

Проверить исправность динистора в домашних условиях можно, заменив таким же или аналогом, имеющим одинаковое напряжение открытия. Косвенно неисправность элемента определяется мультиметром, если измеренное сопротивление детали хотя бы в одном направлении не равно бесконечности.

Биполярные транзисторы также проверяются мультиметром. Для этого поочередно измеряется сопротивление между базой и коллектором, базой и эмиттером в обоих направлениях.

В одном направлении транзистор «открыт» и сопротивление выводов относительно базы порядка сотни Ом. Во всех остальных комбинациях подключения щупов мультиметра оно равно бесконечности.

Между коллектором и эмиттером оно равно бесконечности всегда.

Если полупроводниковые элементы исправны, проверяется исправность оставшихся деталей – конденсаторов и резисторов.

Источник: http://electric-tolk.ru/remont-lyuminescentnyx-lamp/

Устройство электронного балласта для люминесцентных ламп

21.05.2017

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути.

На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи.

Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра.

Совет

Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета.

Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы.

Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА).

Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.

Люминесцентная лампа, С1 и С2 – конденсаторы

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1.

После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1.

Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается.

При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.

Фото внутреннего устройства ЭПРАФото типового устройства ЭПРА

Ремонт ЭПРА

В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.
Читайте также:  Как проверить сопротивление изоляции - советы электрика

Эпра для компактных лдс

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт.

Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8.

При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Простейший светильник из двух ламп

Источник: https://LampaGid.ru/vidy/lyuminestsentnye/elektronnyj-ballast

Эпра для лампы своими руками

Необходимость хорошего освещения радиолюбительского места занятий, с достаточным световым потоком и в тоже время экономичного,  подвигло, можно даже сказать,  на некоторые искания и пробу вариантов.

Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник  «потолочно – настенного»  варианта китайского производства.

Последнее понравилось более всего, но  крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два – три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить. 

Схема принципиальная

Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.

Собственно добросовестно срисованная с печатной платы схема. Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы.

На схеме номинал резисторов указан в соответствии с цветовой маркировкой.

Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) – сработало.

Рисунок можно сохранить на ПК и увеличить

Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён – лампочка зажглась с первого раза.

Обратите внимание

Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт.

Если она горит а люминесцентная первоначально мигает и тухнет – увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.

В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.

Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 – 7n5, R4 сопротивление 6 Ом, R5 – 8 Ом, R7 – 13 Ом.

Светильник «вписался»  не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

Источник: http://el-shema.ru/publ/pitanie/ehpra_dlja_lampy_svoimi_rukami/5-1-0-407

Подключение люминесцентных ламп через ЭПРА | Каталог самоделок

Улучшить работу люминесцентного светильника, убрав надоедливое гудение, раздражающее моргание, и повысить яркость свечения вполне реально самому. Достаточно лишь заменить устаревшую схему дроссельного управления на современный электронный пускорегулирующий аппарат — ЭПРА.

Подключение балластной электроники возможно выполнить с любой люминесцентной трубкой, всех типов: Т12, Т8 и Т5, но к лампам Т12 оно будет не так рационально. Производство ламп Т12 сейчас сокращается, ввиду их низкой энергоэкономичности по сравнению с другими Т8 и Т5. За границей устаревшие Т12 фактически уже не выпускаются.

Обычный, купленный в магазине ЭПРА состоит из:

  • фильтра низкочастотных помех, работающего на вход и выход устройства;
  • выпрямителя переменного тока сетевой частоты;
  • инвертора;
  • элементов для коррекции коэффициента мощности;
  • фильтра постоянного тока;
  • дросселя, ограничивающего рабочий ток.

Светильник запускается электронным балластом в три этапа:

  1. Прогрев спиралей лампы для последующего плавного пуска, продлевающего срок службы.
  2. Подача импульса повышенного напряжения, необходимого для включения лампы.
  3. Стабилизация напряжения на рабочем уровне после зажигания светильника.

Подключение люминесцентных ламп через ЭПРА

Первое, что нужно сделать — разобрать светильник и вынуть из него старую начинку: дроссель, стартер, конденсаторы. В конечном итоге внутри должны остаться лампы дневного света, комплект проводов и новоустановленный электронный блок.

Для такой работы вам потребуется:

  • индикатор фазы;
  • отвертка с минусовым жалом;
  • отвертка крестовая;
  • кусачки;
  • канцелярский нож для зачистки проводов;
  • изоляционная лента;
  • саморезы, понадобятся для закрепления блока ЭПРА.

Покупать новый электронный блок следует исходя из мощности вашего светильника.

Подключение ЭПРА к люминесцентным лампам несложно сделать, имея минимальные познания в электрических схемах, и небольшой опыт работы с электропроводкой.

Перед тем как собирать схему, следует выбрать внутри светильника место для закрепления коробка ЭПРА, руководствуясь длиной проводов и удобством доступа к клеммам. Электронный блок быстро и надежно закрепляется к корпусу при помощи обычных саморезов в пробитые гвоздем отверстия. Теперь можно соединить пускорегулирующий аппарат с розетками ламп.

Подключая две люминесцентные лампы, без разницы последовательно или параллельно, убедитесь в том, что мощность электронного блока в два раза выше, чем у каждого источника света. Таким же принципом, важно руководствоваться при сборке трёх и более ламп в одном светильнике.

Собрав осветительный прибор, нужно бы его повесить на место. Перед подключением проводов, торчащих из стены, проверьте отсутствие напряжения на них индикатором.

Самый ответственный момент — первое включение прибора с ЭПРА. Если светильник, например, с двумя лампами был собран правильно, тогда: во-первых, лампы засветятся одновременно быстро, без разогрева как было раньше; во-вторых, свет перестанет заметно мерцать, пропадет низкочастотное гудение и повысится яркость света в целом.

Источник: https://volt-index.ru/muzhik-v-dome/svoimi-rukami/podklyuchenie-lyuminestsentnyih-lamp-cherez-epra.html

Схема электронного балласта для люминесцентной лампы. Принцип работы люминесцентных ламп

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с.

Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус.

Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт.

Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе.

Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя.

Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе.

Читайте также:  Как подключить дроссель к лампе дрл - советы электрика

Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

https://www.youtube.com/watch?v=k9Jo5f3tnAA

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему.

Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится).

Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

Важно

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА.

Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно.

Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Зачем нужен баластник в светильнике

Люминесцентная лампа – это запаянная стеклянная трубка. Внутри неё находятся инертный газ и небольшое количество паров ртути. В концах трубки находятся нити накала из вольфрамовых спиралей. Их нагрев вызывает эмиссию электронов и облегчает появление внутри трубки тлеющего разряда.

Свет, появляющийся при этом, бледно-синий, с большим количеством ультрафиолета, поэтому внутренние стенки трубки покрыты слоем люминофора, переизлучающего ультрафиолет в видимый свет.

Включение люминесцентных светильников

Есть три основных вида пусковых устройств ЛДС.

С помощью стартёра и дросселя

При такой схеме включения нити накала соединяются последовательно со стартёром и баластником. Другое название электромагнитного баластника – дроссель. Это катушка индуктивности, ограничивающая ток через светильник.

При включении светильника стартёр подключает вольфрамовые спирали последовательно с дросселем. При их нагреве происходит эмиссия электронов, что облегчает появление между электродами разряда.

Периодически стартёр разрывает цепь и, если в это время происходит запуск лампочки, то напряжение между электродами падает, и он больше не включается.

Если же разряд не возникает, то стартёр снова замыкает цепь, и процесс зажигания повторяется.

Недостатки этой схемы:

  • длительное время запуска, особенно зимой в неотапливаемых помещениях;
  • дроссель гудит при работе;
  • свет мерцает с частотой 100Гц, что незаметно глазу, но может вызвать головную боль.

Умножитель напряжения

Для работы таких светильников раньше использовались самодельные умножители напряжения. Роль токоограничивающего баласта в этой схеме играют конденсаторы С3 и С4, а С1 и С2 создают высокое напряжение, необходимое для появления внутри трубки разряда.

Высоковольтный разряд зажигает ЛДС сразу, но мерцание такого светильника сильнее, чем в схеме со стартёром и дросселем.

Электронный пускорегулирующий аппарат (ЭПРА)

Электронный балласт для люминесцентных ламп – это преобразователь напряжения, зажигающий и питающий лампу во время работы. Вариантов реализации таких устройств много, но собраны они по одной блок-схеме. В некоторых конструкциях добавляется регулировка яркости.

Запуск светильников с ЭПРА производится двумя способами:

  • Перед включением нити накала разогреваются, из-за чего запуск откладывается на 1-2 секунды. Яркость света может нарастать постепенно или сразу включаться на полную мощность;
  • Зажигание лампы производится при помощи колебательного контура, который входит в резонанс с колбой. При этом происходит постепенное повышение напряжения и разогрев нитей накала.

Такие устройства обладают рядом достоинств:

  • питание светильника осуществляется напряжением высокой частоты, что устраняет мерцание света;
  • компактность, что позволяет уменьшить габариты светильника;
  • быстрое, но плавное включение, продлевающее срок службы лампы;
  • отсутствие шума и нагрева при работе;
  • высокий КПД – до 95%;
  • встроенные защиты от короткого замыкания.

Электронные ПРА изготавливаются на 1, 2 или на 4 лампы.

Устройство электромагнитных ПРА

Схемы электронных баластников разных производителей отличаются друг от друга, но построены по одному принципу.

Блок-схема ЭПРА

Плата состоит из следующих элементов:

  • фильтра, защищающего схему от помех, создаваемых другим оборудованием;
  • выпрямителя, преобразующего переменное напряжение сети в постоянное, необходимое для работы схемы;
  • фильтра, сглаживающего пульсации напряжения после выпрямителя;
  • инвертора, питающего элементы платы;
  • самого электронного баластника.

На плате есть три пары выводов или клемм: одна – для подключения 220В и две – для нитей накала.

Принцип работы электронного баластника

Условно процесс поджига и работы люминесцентного светильника делится на три этапа:

  1. Разогрев нитей накала. Это необходимо для возникновения эмиссии свободных электронов, облегчающих появления разряда внутри колбы;
  2. Появление разряда между электродами. Это делается при помощи высоковольтного импульса;
  3. Стабилизация тлеющего разряда и дальнейшая работа светильника.

Эта последовательность обеспечивает плавный пуск, увеличивающий срок службы лампы и стабильную работу при низких температурах.

Принципиальная схема электронного балласта

На следующем рисунке изображена одна из распространённых принципиальных схем ЭПРА.

Порядок её работы следующий:

  1. Диодный мост преобразовывает переменное напряжение сети 220В в постоянное пульсирующее. Конденсатор С2 сглаживает пульсации;
  2. Постоянное напряжение поступает на двухтактный полумостовой инвертор. Он собран на двух n-p-n транзистора, являющихся генераторами высокой частоты;
  3. Управляющий ВЧ сигнал в противофазе поступает на обмотки W1 и W2 трансформатора. Это трёхобмоточный трансформатор L1, намотанный на ферритовом магнитопроводе;
  4. Обмотка W3 подаёт высокое резонансное напряжение на нити накала. Оно создаёт ток, достаточный для нагрева спиралей и появления эмиссии электронов;
  5. Параллельно колбе включён конденсатор С4. При резонансе напряжения на нём возникает высокое напряжение, достаточное для появления разряда внутри трубки;
  6. Появившаяся дуга закорачивает ёмкость и прекращает резонанс напряжений. Дальнейшая работа обеспечивается токоограничивающими элементами L2 и С3.

Ремонт и замена ЭПРА

Неисправностей светильников два вида: сгоревшая лампа и неисправный блок. Лампочка подлежит замене, а неисправный электронный баластник можно отремонтировать или заменить новым.

Ремонт ЭПРА

Для того чтобы выполнить ремонт люминесцентных светильников и устранение неполадок в ЭПРА, необходимы начальные навыки ремонта электронной аппаратуры:

  1. Проверить и заменить предохранитель. В некоторых моделях для этого используется резистор номиналом 1-5 Ом. Вместо него припаивается кусочек тонкой проволоки;
  2. Производятся визуальный осмотр и проверка тестером элементов платы;
  3. Оценить стоимость неисправных деталей. При условии, что она ниже цены нового ЭПРА, произвести ремонт электронного балласта.

Замена электронного ПРА

Неисправный электронный дроссель меняется на новый. Это может быть готовая плата или схема из сгоревшей энергосберегающей лампочки. Используя такую плату, можно выполнить ремонт светильников с люминесцентными лампами или сделать люминесцентный светильник своими руками.

Принцип работы и запуск компактной люминесцентной лампы аналогичен обычным трубчатым ЛДС. Плата, которая находится внутри неё, без проблем управляет обычной лампой дневного света.

Как проверить плату КЛЛ:

  1. Разобрать пластмассовый корпус. Он состоит из двух половин, соединённых защёлками. В щель просовывается нож и проводится по кругу;
  2. На плате находятся четыре штырька с намотанными проволочками, расположенные парами. Это нити накала. Они прозваниваются тестером;
  3. Если нити целые, то поломка в плате. Проводки разматываются, и колба отсоединяется для использования с платой от другой КЛЛ;
  4. Если одна из нитей накала оборвана, то плата отсоединяется и подключается вместо сгоревшего электронного баластника в люминесцентный светильник. При установке её необходимо изолировать от металлического корпуса и зафиксировать клеевым пистолетом или силиконовым герметиком.

Использование электронных баластников в люминесцентных лампах увеличивает их срок службы и делает освещение более приятным. Это альтернатива замене таких светильников на КЛЛ.

Источник: https://sdelaydom.guru/remont-kvartiry/elektrichestvo-i-osveshhenie/shema-elektronnogo-ballasta-dlya-lyuminestsentnoj-lampy-printsip-raboty-lyuminestsentnyh-lamp.html

Самодельный люминесцентный светильник

В этой небольшой статье пойдет речь о том, как своими руками сделать люминесцентный светильник на основе ЭПРА для подсобных и технических помещений, которые не требуют от светильника внешней красоты и изысканного дизайна. Светильник будет предназначаться для трубчатых люминесцентных ламп с цоколем G13, длиной 1200 мм. Эти лампы имеют низкую цену и способны осветить большую площадь.

Для изготовления светильника необходимо:

  1. Корпус. Его можно изготовить из подручного материала. По сути, корпус – это просто деталь прямоугольной формы, из материала не поддерживающего горение (металл, текстолит, электротехническая пластмасса и т.п.).  Можно использовать старый корпус от отслужившего свой срок «древнего» светильника.

  2. ЭПРА – электронный пускорегулирующий аппарат. Его еще называют «электронный дроссель». По сравнению с обычным дросселем, ЭПРА имеет ряд преимуществ при той же цене: мгновенный старт ламп, отсутствие мерцания ламп, малая зависимость яркости ламп от перепадов напряжения питания.

    В данной статье рассказывается о светильнике на основе ЭПРА 2×36 Вт.

  3. Патроны G13 из расчета два патрона на одну лампу.
  4. Моножильные медные провода сечением 0,2-0,5 кв.мм. Можно использовать  и многопроволочные (гибкие), залудив концы.

  5. Подходящие винтики, гаечки для крепления всех деталей на корпусе.

Процесс изготовления светильника сводится к следующим операциям по креплению и подключению

  1. Крепление патронов на необходимом расстоянии друг от друга, в зависимости от длины лампы и желаемого расстояния между лампами.
  2. Крепления ЭПРА. Так как ЭПРА при работе нагревается, то располагать его рекомендуется так, чтобы ЭПРА получал минимум дополнительного нагрева от работающей лампы. Зона минимального нагрева лампы находится ближе к ее центру.

  3. Подключение патронов к ЭПРА с помощью заранее заготовленных проводов нужной длины и согласно схеме подключения, которая обычно нарисована на корпусе ЭПРА. В патроны провода просто вставляются и удерживаются внутри пластинчатой пружиной.

    По этой причине, лучше использовать моножильные провода, так как многопроволочные провода (без предварительного облуживания) воткнуть практически невозможно.

  4. Крепление светильника к потолку или стене. Подключение светильника к сети питания 220 В.

Несмотря на то, что наличие защитного стекла для ламп низкого давления не является обязательным, лампы желательно прикрыть подходящим прозрачным материалом, во избежание случайного повреждения стеклянной колбы лампы. Фотографии изготовленного светильника и рисунок со схемой подключения прилагаются.

Для надежности, корпус светильника (слева, справа и между патронов) был усилен металлическими уголками.

Патрон G13. Вариант для винтового крепления к боковой поверхности.

Патрон G13. Вариант для бокового крепления с помощью защелок.

Патрон G13. Вариант для нижнего крепления с помощью защелок.

Подключение ЭПРА. Поясняющий рисунок.

ЭПРА на светильнике. ЭПРА расположен между лампами, ближе к их центру (в зоне минимального нагрева).

Подключение патрона G13

Типовой патрон G13 для люминесцентной лампы подключается без применения инструментов, достаточно снять изоляцию с провода на длину около 1 см и вставить его до упора в  отверстие. Провод должен быть однопроволочным и допустимого сечения (согласно спецификации на патрон).

В случае применения многопроволочного провода, его нужно облудить или опрессовать в гильзовый наконечник. Внутри патрона провод удерживается плоскопружинным контактом, изготовленным из упругого цветного металла.

Патрон G13, как правило, имеет четыре отверстия для ввода проводов – по два на каждый контакт. Таким образом есть возможность не только завести провод в патрон, но и выполнить ответвление провода от патрона, что нередко требуется.

Совет

При необходимости извлечь провод, необходимо тонким шилом нажать на специальный рычажок внутри корпуса, контакт при этом изгибается, высвобождая провод.

Для установки лампы в патрон, необходимо поместить контакты в прорезь одновременно с обоих концов лампы и повернуть колбу на угол 90°.

Патрон G13 в закрытом состоянии. Центральная поворотная деталь черного цвета заблокировала выход контактов лампы через прорезь в корпусе патрона.

Отверстия для проводов. Одинаковый цвет стрелок указывает на подключение к одному и тому же контакту.

Патрон G13 в разобранном виде.

Плоскопружинные контакты.

На провод давит плоская пружина, одновременно удерживая его от выдергивания.

Отверстия (желтые стрелки), необходимые при извлечении провода (фото сверху).
Площадка на плоском контакте (для наглядности показано в разобранном виде), на которую нужно надавить для высвобождения провода (фото снизу).

Время показало, что данный самодельный люминесцентный светильник хорошо запускается и работает в диапазоне температур окружающего воздуха от -10°… +30°C, более экстремальные температурные испытания не проводились.

Светильник нечувствителен к высокой запыленности помещения и перепадам сетевого напряжения (которые могут происходить, например, во время пользования сварочным аппаратом или запуска мощного электрооборудования), отлично подходит для организации качественного освещения в мастерской или гараже.

Чтобы свет был более приятен для глаз, есть смысл установить в светильник лампы разных цветовых температур (как на фотографиях выше).

Источник: http://zakatayrukava.ru/stroitelstvoiremont/elektrosnabzhenie/20-luminescentniy-svetilnik.html

Как своими руками сделать люминесцентный светильник? | Мастер Винтик. Всё своими руками!

В этой небольшой статье пойдет речь о том, как своими руками сделать люминесцентный светильник на основе ЭПРА для подсобных и технических помещений, которые не требуют от светильника внешней красоты и изысканного дизайна. Светильник будет предназначаться для трубчатых люминесцентных ламп с цоколем G13, длиной 1200 мм. Эти лампы имеют низкую цену и способны осветить большую площадь.

Для изготовления светильника необходимо:

  1. Корпус. Его можно изготовить из подручного материала. По сути, корпус – это просто деталь прямоугольной формы, из материала не поддерживающего горение (металл, текстолит, электротехническая пластмасса и т.п.). Можно использовать старый корпус от отслужившего свой срок «древнего» светильника.
  2. ЭПРА – электронный пускорегулирующий аппарат. Его еще называют «электронный дроссель». По сравнению с обычным дросселем, ЭПРА имеет ряд преимуществ при той же цене: мгновенный старт ламп, отсутствие мерцания ламп, малая зависимость яркости ламп от перепадов напряжения питания. В данной статье рассказывается о светильнике на основе ЭПРА 2×36 Вт.
  3. Патроны G13 из расчета два патрона на одну лампу.
  4. Моножильные медные провода сечением 0,2-0,5 кв.мм. Можно использовать и многопроволочные (гибкие), залудив концы.
  5. Подходящие винтики, гаечки для крепления всех деталей на корпусе.

Процесс изготовления светильника сводится к следующим операциям по креплению и подключению.

  1. Крепление патронов на необходимом расстоянии друг от друга, в зависимости от длины лампы и желаемого расстояния между лампами.
  2. Крепления ЭПРА. Так как ЭПРА при работе нагревается, то располагать его рекомендуется так, чтобы ЭПРА получал минимум дополнительного нагрева от работающей лампы. Зона минимального нагрева лампы находится ближе к ее центру.
  3. Подключение патронов к ЭПРА с помощью заранее заготовленных проводов нужной длины и согласно схеме подключения, которая обычно нарисована на корпусе ЭПРА. В патроны провода просто вставляются и удерживаются внутри пластинчатой пружиной. По этой причине, лучше использовать моножильные провода, так как многопроволочные провода (без предварительного облуживания) воткнуть практически невозможно.
  4. Крепление светильника к потолку или стене. Подключение светильника к сети питания 220 В.

Не смотря на то, что наличие защитного стекла для ламп низкого давления не является обязательным, лампы желательно прикрыть подходящим прозрачным материалом, во избежание случайного повреждения стеклянной колбы лампы. Фотографии изготовленного светильника и рисунок со схемой подключения прилагаются. Для надежности, корпус светильника (слева, справа и между патронов) был усилен металлическими уголками.

Патрон G13. Вариант для винтового крепления к боковой поверхности.

Патрон G13. Вариант для бокового крепления с помощью защелок.

Патрон G13. Вариант для нижнего крепления с помощью защелок.

Подключение ЭПРА. Поясняющий рисунок.

ЭПРА на светильнике. ЭПРА расположен между лампами, ближе к их центру (в зоне минимального нагрева).

 Источник: zakatayrukava.ru

  • Проверка радиодеталей мультиметром для начинающих радиолюбителей
  • Статья для начинающих радиолюбителей. В ней  приводятся примеры проверки основных радиодеталей, используемых в радиоэлектронной аппаратуре (резисторы, конденсаторы, трансформаторы, катушки индуктивности, дроссели, диоды и транзисторы) с помощью  мультиметра или обычного стрелочного омметра.    Подробнее…

  • Профилактика, диагностика и ремонт копировального аппарата
  • Известно, что качественное сервисное обслу­живание КА (копировального аппарата) позволяет поддерживать его в по­стоянной готовности, использовать его в эффек­тивном режиме, в сжатые сроки проводить ремонтно-восстановительные работы, сущест­венно увеличить его ресурс. Обычно все работы по сервисному обслуживанию проводятся в со­ответствии с требованиями «Руководства по техническому обслуживанию» фирмы-изготови­теля КА. Известно, что сроки профилактики КА обычно следующие: месячные, трехмесячные, полугодовые и годовые. Например, комплекс профилактических мероприятий, проводимых при ежемесячном обслуживании КА, предпола­гает следующие этапы: Подробнее…

  • Вязание из квадратов
  • Оригинальные изделия, выполненные крючком из квадратов с красивыми узорами, будут украшением вашей комнаты. Они прибавят ей тепла и уюта, а также красоты и изысканности одновременно.Подробнее…

Источник: http://www.MasterVintik.ru/kak-svoimi-rukami-sdelat-lyuminescentnyj-svetilnik/

Ремонт люминесцентных ламп

Чем обусловлены неисправности?

Лампа накаливания была самой распространённой до недавнего времени. Дорожающие энергоресурсы обусловили расширение сектора люминесцентных вариантов на рынке. А энергосберегающие лампы стало возможно использовать вместо ламп накаливания. Свет в нем появляется из вольфрамовой спирали, нагретой до высокой температуры. И если спираль разрушается, изделие приходит в полную негодность.

В люминесцентных лампах тоже есть две спирали, которые со временем разрушаются. Но они не являются источниками света, а только участвуют в подготовке газа, наполняющего колбу, к свечению.

После разрушения спирали люминесцентная лампа не способна нормально светить либо не светит вообще. Это обусловлено не самой технологией, а в целом схемой её подключения.

Если изменить схему и её компоненты, эта лампа может продолжить давать свет.

Светящийся газ является хорошим проводником. По этой причине напряжение на светящейся лампе никак не может быть таким же, как и в электросети, к которой она подключена.

В этом случае через неё потечёт ток большой силы. Для ограничения тока применяется балласт. В обычной схеме это дроссель.

Он также является фильтром, поскольку с ним среднее значение величины тока получается больше и мерцание света уменьшается.

Чтобы начал появляться свет должна произойти ионизация газа в её колбе. В обычной схеме это делают спирали, накаляющиеся при срабатывании стартеров. Но они изнашиваются и перегорают.

И после этого нарушается нормальный цикл запуска, что характерно для всех конструкций люминесцентных ламп. Однако перегорает только одна спираль. Другая спираль остаётся работоспособной.

Поэтому возможно произвести ремонт люминесцентных ламп самостоятельно.

Простая установка резистора

Для ламп, у которых балластом является дроссель, наличие целой спирали значения не имеет. Они всё равно не смогут достичь необходимой ионизации в колбе на одной исправной спирали.

А вот электронный балласт позволяет обеспечить их работу и с одной спиралью. Дело в том, что в нём есть импульсы высокого напряжения, которые малы по своей длительности, но велики по амплитуде.

Эти импульсы достигают величины, большей, чем напряжение в сети.

Этого напряжения достаточно для пробоя, так называемого искрового промежутка между штырьками, расположенными на концах колбы и служащими для удерживания спиралей. Они становятся электродами после того как спираль перегорает.

Обратите внимание

Импульс напряжения появляется при выключении транзистора, соединённого с индуктивностью в виде трансформатора или дросселя. Эта деталь выполняет ту же роль, что и дроссель в обычной схеме.

Но поскольку транзистор задаёт ток с частотой в десятки килогерц её размеры в десятки раз меньше чем у дросселя обычной схемы.

Однако если спираль перегорает, получается обрыв в схеме, функционирование которой прекращается. Спираль имеет сопротивление, которое несёт определённую функцию в работе схемы. И эту функцию можно возложить на резистор, которым можно заменить сгоревшую спираль. Поэтому, если энергосберегающая лампа перестала давать свет, можно попытаться её отремонтировать. Хотя это не совсем точно сказано.

Саму лампу, которая является стеклянной колбой с электродами, отремонтировать невозможно. Но установка резистора определённого сопротивления в определённом месте электронного балласта при прочих исправных деталях схемы обеспечит дальнейшее её свечение. Чтобы сделать это, надо открыть корпус балласта. Устанавливая отвёртку в шов на балласте, и поворачивая её как ключ корпус можно вскрыть.

При этом надо проявить осторожность, чтобы две половины корпуса при открывании не натянули короткие провода, соединённые с цоколем и не оторвались от него.

Затем плата электронного балласта открывается для максимально возможного доступа. На ней есть штырьки В1, В2, А2, А1 к которым примотаны выводы спиралей.

Букве «В» соответствую два вывода одной спирали, а букве «А» – два вывода другой спирали.

Тестером определяется перегоревшая спираль. Его переключают в режим измерения сопротивления и щупами прикасаются к выводам А и В.

Важно

На выводах перегоревшей спирали будет обрыв, а исправная спираль покажет величину сопротивления резистора, который понадобится для ремонта. Для лампы с потребляемой мощностью 20 Ватт сопротивление холодной спирали составляет 9 – 10 Ом.

Но поскольку спираль в работающем балласте будет нагреваться, и её сопротивление увеличится можно применять одно — ваттный резистор с сопротивлением 10 – 20 Ом.

Этот резистор припаивается к выводам перегоревшей спирали с обратной стороны платы балласта. Между ним и платой надо проложить изолирующую прокладку из стеклоткани.

Если всё кроме спирали работоспособно, лампа будет светиться. Возможно, её запуск будет не таким равномерным как при полностью исправных спиралях. Но, тем не менее, немного помигав, она будет нормально светить.

Новая схема подключения

Для обычных схем с дросселями и стартерами дело обстоит сложнее. В них нет транзистора, который позволит получить высокое напряжение способное пробить промежуток между электродами. Поэтому придётся переделать схему так, чтобы получить на электродах высокое напряжение, достаточное для пробоя промежутка между электродами. Такая схема известна давно ещё до появления компьютеров.

Для большей эффективности резистор R1 можно заменить лампой накаливания аналогичной мощности, поскольку проволочный резистор будет существенно и бесполезно нагреваться.

Без этого резистора схему включать нельзя. Есть риск пробоя конденсаторов C1и C4. Поэтому резистор R1 ограничит ток в таком случае. Поскольку схема содержит выпрямитель, лампа получает полярные электроды и поляризацию ионизированного газа. По этой причине в ней будет появляться тёмное катодное пространство, и происходить усиленный износ одного из электродов.

Поэтому рекомендуется ввести в схему тумблер с парой переключающих контактов.

К подвижным контактам тумблера припаиваются электроды лампы, а неподвижные присоединяются к точкам «а» и «б» так чтобы, переключая тумблер, его подвижные контакты соединялись с разными точками.

Используя тумблер, можно временно избавиться от катодного пространства до его появления вблизи другого электрода. Придётся время от времени уделять внимание лампе, и переключать тумблер.

Если не менять полярность электродов внутри колбы появится почернение от напыления материалом электрода. Так что эта схема хоть и работоспособная, но требующая обслуживания для увеличения продолжительности «жизни» лампы.

Источник: http://podvi.ru/svetotexnika/remont-lyuminescentnykh-lamp.html

Ссылка на основную публикацию
Adblock
detector