Принцип работы трансформатора напряжения – советы электрика

Устройство и принцип действия трансформатора. Проверка знаний

Вопрос 1. Из чего состоит трансформатор? Ответ. Простейший трансформатор состоит из замкнутого магнитопровода и двух обмоток в виде цилиндрических катушек.

Одна из обмоток подключается к источнику переменного синусоидального тока с напряжением u1 и называется первичной обмоткой. К другой обмотке подключается нагрузка трансформатора. Эта обмотка называется вторичной

обмоткой.

Вопрос 2. Как осуществляется передача энергии из одной обмотки в другую?
Ответ. Передача энергии из одной обмотки в другую осуществляется путём электромагнитной индукции.

Переменный синусоидальный ток i1, протекающий по первичной обмотке трансформатора, возбуждает в магнитопроводе переменный магнитный поток Фс, который пронизывает витки обеих обмоток и наводит в них ЭДС
и
с амплитудами пропорциональными числам витков w1 и w2.

При подключении ко вторичной обмотке нагрузки в ней под действием ЭДС e2 возникает переменный синусоидальный ток i2 и устанавливается некоторое напряжение u2.

Электрическая связь между первичной и вторичной обмотками трансформатора отсутствует и энергия во вторичную обмотку передаётся посредством магнитного поля, возбуждаемого в сердечнике.

Вопрос 3. Чем является вторичная обмотка трансформатора по отношению к нагрузке?
Ответ. По отношению к нагрузке вторичная обмотка трансформатора является источником электрической энергии с ЭДС e2. Пренебрегая потерями в обмотках трансформатора можно считать, что напряжение питающей сети U1 ≈ E1, а напряжение в нагрузке U2 ≈ E2.

Вопрос 4. Что такое коэффициент трансформации?
Ответ. Так как ЭДС обмоток пропорциональны числам витков, то соотношение напряжений питания трансформатора и нагрузки также определяется соотношением чисел витков обмоток, т.е.
U1/U2 ≈ E1/E2 ≈ w1/w2 = k.
Величина k называется коэффициентом трансформации.

Вопрос 5. Какой трансформатор называется понижающим?
Ответ. Если число витков вторичной обмотки меньше числа витков первичной w2 < w1, то k > 1 и напряжение в нагрузке будет меньше напряжения на входе трансформатора. Такой трансформатор называется понижающим.

Вопрос 6. Какой трансформатор называется повышающим?
Ответ. Если число витков вторичной обмотки больше числа витков первичной w2 > w1, то k < 1 и напряжение в нагрузке будет больше напряжения на входе трансформатора. Такой трансформатор называется повышающим.

Вопрос 7. Какая обмотка трансформатора называется обмоткой высшего напряжения (ВН)?
Ответ. Обмотка, подключаемая к сети с более высоким напряжением, называется обмоткой высшего напряжения (ВН). Вторая обмотка называется обмоткой низшего напряжения (НН).

Вопрос 8. Какие трансформаторы называются «сухими»?
Ответ. Трансформаторы, в которых отвод тепла производится потоком воздуха, называются «сухими» трансформаторами.

Вопрос 9. Какие трансформаторы называются «масляными»? Ответ. В тех случаях, когда воздушным потоком невозможно отвести тепловую энергию так, чтобы обеспечить ограничение

температуры изоляции обмоток на допустимом уровне, для охлаждения используют жидкую среду, погружая трансформатор в бак со специальным трансформаторным маслом, которое одновременно выполняет роль хладоагента и электрической изоляции. Такие трансформаторы называются «масляными».

Вопрос 10. Как трансформаторы обозначают на электрических схемах? Ответ.

На рисунке показаны условные обозначения однофазных двухобмоточных (1, 2, 3) и многообмоточных (7, 8) трансформаторов, а также трёхфазных трансформаторов (12, 13, 14, 15, 16). Здесь же показаны обозначения однофазных (4, 5) и трёхфазных (9, 10) автотрансформаторов и измерительных трансформаторов напряжения (6) и тока (11).

Вопрос 11. Чем определяются условия работы и свойства трансформатора?
Ответ. Условия работы и свойства трансформатора определяются системой параметров, называемых номинальными, т.е. значениями величин, соответствующих расчётному режиму работы трансформатора. Они указываются в справочных данных и на табличке, прикрепляемой к изделию.

    Номинальными параметрами трансформатора являются:

  • первичное линейное напряжение U1N, в В или кВ;
  • вторичное линейное напряжение U2N, измеряемое при отключённой нагрузке и номинальном первичном напряжении, в В или кВ;
  • токи первичной и вторичной обмоток I1N и I2N, в А или кА;
  • полная мощность SN, равная для однофазных и трёхфазных трансформаторов соответственно, в В⋅А или кВ⋅А.

Вопрос 12. Как влияет рабочая частота трансформатора на его массу и габариты?
Ответ. Повышение рабочей частоты трансформатора позволяет при прочих равных условиях существенно уменьшить массу и габариты изделия.

Действительно, напряжение первичной обмотки примерно равно ЭДС, наводимой в ней магнитным потоком в сердечнике Φc, а полная мощность, например, однофазного трансформатора равна

гдеи– заданные номинальные значения индукции в сердечнике и плотности тока в обмотке, а Sc ∼ l2 и Si – поперечное сечение сердечника и суммарное сечение w1 витков обмотки.

Следовательно, увеличение частоты питания f позволяет пропорционально уменьшить сечение сердечника при той же мощности трансформатора, т.е. уменьшить в квадрате его линейные размеры l.

Вопрос 13. Для чего служит магнитопровод трансформатора?
Ответ. Магнитопровод трансформатора служит для увеличения взаимной индукции обмоток и в общем случае не является необходимым элементом конструкции.

При работе на высоких частотах, когда потери в ферромагнетике становятся недопустимо большими, а также при необходимости получения линейных характеристик, применяются трансформаторы без сердечника, т.н. воздушные трансформаторы.

Обратите внимание

Однако в подавляющем большинстве случаев магнитопровод является одним из трёх основных элементов трансформатора. По конструкции магнитопроводы трансформаторов подразделяются на стрежневые и броневые.

Вопрос 14. Каким условиям должна удовлетворять конструкция обмоток трансформатора? Ответ. Конструкция обмоток трансформаторов должна удовлетворять условиям высокой электрической и механической прочности, а также термостойкости.

Кроме того, технология их изготовления должна быть по возможности простой, а потери в обмотках минимальными.

Вопрос 15. Из чего изготавливаются обмотки трансформатора?
Ответ. Обмотки изготавливаются из медного или алюминиевого провода. Плотность тока в медных обмотках масляных трансформаторов находится в пределах 2…4,5 А/мм2, а в сухих трансформаторах 1,2…3,0 А/мм2. Верхние пределы относятся к более мощным трансформаторам.

В алюминиевых обмотках плотность тока на 40…45% меньше. Провода обмоток могут быть круглого сечения площадью 0,02…10 мм2 или прямоугольного сечения площадью 6…60 мм2. Во многих случаях катушки обмоток наматываются из нескольких параллельных проводников. Обмоточные провода покрыты эмалевой и хлопчатобумажной или шёлковой изоляцией.

В сухих трансформаторах применяются провода с термостойкой изоляцией из стекловолокна.

Вопрос 16. Как подразделяются обмотки трансформатора по способу расположения на стержнях?
Ответ. По способу расположения на стержнях обмотки подразделяются на концентрические и чередующиеся. Концентрические обмотки выполняются в виде цилиндров, геометрические оси которых совпадают с осью стержней. Ближе к стержню обычно располагается обмотка низшего напряжения, т.

к. это позволяет уменьшить изоляционный промежуток между обмоткой и стержнем. В чередующихся обмотках катушки ВН и НН поочерёдно располагают вдоль стрежня по высоте. Такая конструкция позволяет увеличить электромагнитную связь между обмотками, но значительно усложняет изоляцию и технологию изготовления обмоток, поэтому в силовых трансформаторах чередующиеся обмотки не используются.

Вопрос 17. Как выполняется изоляция обмоток трансформатора? Ответ. Одним важнейших элементов конструкции обмоток трансформатора является изоляция. Различают главную и продольную изоляцию. Главной называется изоляция обмотки от стержня, бака и других обмоток.

Её выполняют в виде изоляционных промежутков, электроизоляционных каркасов и шайб. При малых мощностях и низких напряжениях функцию главной изоляции выполняет каркас из пластика или электрокартона, на который наматываются обмотки, а также несколько слоёв лакоткани или картона, изолирующих одну обмотку от другой.

Продольной называется изоляция между различными точками одной обмотки, т.е. между витками, слоями и катушками. Межвитковая изоляция обеспечивается собственной изоляцией обмоточного провода.

Для междуслойной изоляции используются несколько слоёв кабельной бумаги, а междукатушечная изоляция осуществляется либо изоляционными промежутками, либо каркасом или изоляционными шайбами.

Важно

Конструкция изоляции усложняется по мере роста напряжения обмотки ВН и у трансформаторов, работающих при напряжениях 200…500 кВ, стоимость изоляции достигает 25% стоимости трансформатора.

Источник: http://electrichelp.ru/ustrojstvo-i-princip-dejstviya-transformatora-proverka-znanij/

Виды трансформаторов

Трансформаторы — уникальные устройства способные преобразовывать напряжение с одного значения в другое. Они могут, как повышать, так и понижать данные показатели.

Читайте также:  Установка стабилизатора напряжения в доме - советы электрика

При выборе такого устройства следует обращать внимание на технические показатели, а также учитывать сферу применения. Купить трансформатор популярных производителей можно, посетив сайт компании ВЭЛСнаб, на котором вы сможете также узнать более подробно о данных изделиях.

Принцип работы трансформатора

Такие изделия очень распространены и являются частью многих электрических приборов. Также трансформаторы могут использоваться как отдельные единицы для понижения напряжения в различных типах сетей.

Устроен прибор очень просто и состоит из двух обмоток:

  • первичная, на которую подается ток определенного напряжения;
  • вторичная осуществляет отвод напряжения.

Работает такое устройство согласно закону электромагнитной индукции, который утверждает, что при изменении магнитного поля изменяется и электрический ток. Это и происходит на первичной и вторичной обмотках.

Основные виды изделий

Все трансформаторы можно разделить на несколько видов по их строению и дальнейшему предназначению:

  • Силовые установки используют в электрических сетях, чтобы преобразовывать подаваемое напряжение в определенное, которое потом используется потребителем.
  • Трансформаторы тока используется для определения значений большой силы тока. При изготовлении таких изделий требуется соблюдение большой точности.
  • Трансформаторы напряжения изменяют напряжение в электрических цепях с высоких значений к более низким. Это позволяет регулировать силу тока, подаваемую на определенный прибор.
  • Автотрансформаторы характеризуются соединенными вместе вторичной и первичной обмотками. Они обладают очень высоким значением КПД.
  • Импульсные устройства. Такие механизмы способны преобразовывать очень короткие импульсы, которые могут длиться лишь несколько десятков микросекунд.
  • Разделительные системы характеризуются отсутствием электрической связи между обмотками, что исключает возможность удара электричества в случае одновременного касания к земле и части трансформатора, которая проводит ток.
  • Пик трансформаторы. Данные механизмы предназначаются для преобразования синусоидального напряжения в импульсы определенной формы.

Использование трансформаторов позволяет создавать надежно защищенные электрические системы с возможностью их регуляции.

Устройство и виды трансформаторов смотрим в видео:

Источник: http://euroelectrica.ru/vidyi-transformatorov/

Принцип действия трансформатора – устройство и назначение, схема конструкции

Трансформатор – это электрическая статическая машина, предназначаемая для изменения характеристик напряжения или тока. Название говорящее – трансформировать – значит преобразовывать. Впрочем, трансформации подвергаются только силовые характеристики тока, частота и форма при этом не изменяются.

Состоит эта машина из нескольких основных частей:

  1. Корпус или магнитопровод – представляет собой сердечник из металлических пластинок, плотно сжатых между собой, изготавливаются из мягкой трансформаторной стали, а в отдельных случаях, из специального состава ферромагнетика.
  2. Первичной обмотки – катушка, размещенная на магнитопроводе, по ней пропускается ток, характеристики которого нужно изменить;
  3. Вторичная обмотка – также катушка, но с проводами других характеристик, в которой индуцируется ток с другими, заранее рассчитанными параметрами.

Принцип работы и область применения

В электромагнитную схему трансформатора входят две обмотки и замкнутый сердечник, выполняемый из трансформаторных листовых материалов. Ток, проходящий по первичной катушке, возбуждает в сердечнике электромагнитную индукцию.

Пересекая провода вторичной катушки, она индуцирует в ней ток, соответствующий параметрам вторичной обмотки. Таких катушек может быть несколько с разными характеристиками (количество витков, сечение провода, материал), соответственно и результат индукции будет различным.

Трансформаторы используются в энергообеспечении народного хозяйства в различных областях:

  1. Для передачи и преобразования электроэнергии:
    • Передача электроэнергии на далекие расстояния и ее разделение между пользователями. Передача электричества по сетям непосредственно после генерации связана с большими его потерями. Генераторы дают напряжение 6-24 кВ, а передача, во избежание потерь, осуществляется при напряжении от 110 до 750 кВ. Для получения таких характеристик применяются повышающие трансформаторы.
    • Когда электроэнергия по ЛЭП доходит до потребителя, она поступает на понижающие трансформаторные станции, где производится понижение напряжения и мощности в соответствии с потребностями для группы потребителей, а затем распределяется на другие трансформаторные подстанции, например, районного значения. Дальнейшее распределение энергии зависит от потребности того или иного объекта или их группы.
  2. Для правильного включения вентилей в преобразователях, что позволяет согласовать величину напряжения на выходах и входах устройства. Их название – преобразовательные.
  3. Для выполнения различных операций технологических процессов, например – сварки, в электролизных производствах, в обеспечении работы электросталеплавильных агрегатов и других.
  4. Обеспечение работы схем и приборов радиоаппаратуры, электроники, средств связи, бытового электрооборудования и многого прочего.
  5. Для подключения электроизмерительных приборов и отдельных аппаратов (реле, коммандеры и др.) в цепи высокого напряжения для обеспечения измерений и электробезопасности объектов. Такие трансформаторы образуют отдельный класс – измерительные.

Устройство

Магнитная схема

Сердечник трансформатора

Конфигурация магнитной схемы разделяет эти устройства на три класса:

  • тороидальные;
  • броневые;
  • стержневые;

Стержень представляет собой ту часть магнитопровода, на которой размещены обмотки, остальная часть называется «ярмо». В виде стержневых изготавливаются трансформаторы большой и средней мощности.

Это связано также с более простой схемой охлаждения такой машины. Магнитопроводы обычно производятся из листовой электротехнической стали толщиной 0,25-0,5 мм. Листовые детали соединяются между собой электротехническим изолирующим лаком. Это делается для уменьшения влияния вихревых токов на работу магнитопровода.

Маломощные и микротрансформаторы обычно производят броневыми, поскольку они в изготовлении дешевле стержневых из-за меньшего числа катушек и технологичности изготовления.

Одним из преимуществ тороидальных трансформаторов является магнитная схема без зазоров. Этим обусловлено низкое магнитное сопротивление магнитопровода таких преобразователей.

Обмотки

Чем ближе расположены обмотки по отношению друг к другу, тем надежнее магнитная связь между ними. Поэтому их принято наматывать одну поверх другой. Такие катушки называются концентрическими.

В зависимости от конструкции, обмотки могут быть расположены последовательно. Эти называются дисковыми. Исполнение зависит от особенностей трансформатора и его назначения.

Мощные статические машины выделяют много тепла и нуждаются в интенсивном охлаждении.

Виды преобразователей

Силовой трансформатор

Предназначается для изменения параметров потока электричества в сетях, используемых для потребления.

Необходимость их использования связана с потребностью понижения мощности (до 760 кВ) подводящих сетей в потребительскую мощность городского хозяйства (220/380 В).

Силовой преобразователь переменного тока предназначается для изменения силы тока прямым воздействием в сети.

Автотрансформатор

Отличен от предыдущего тем, что обмотки в нем соединяются не только через индукционные потоки, но и непосредственно одна с другой. Вторичная обмотка имеет несколько выводов (но не менее трех), подключение к ним в различных комбинациях ведет к получению различного напряжения.

Преимуществом такой конструкции является повышенный КПД устройства, потому что изменению подвергается только часть энергии. Это эффективно при небольшом различии напряжений на входе и выходе.

Несовершенство этих устройств состоит в том, что между обмотками нет изоляции. Применение оправдано при надежном заземлении в сетях до 115 кВ и небольшим коэффициентом трансформации – в пределах 3-4 раз. Габаритные размеры магнитопровода и обмоток у таких машин меньше, следовательно, они экономичнее в производстве.

Трансформатор напряжения

Этот вид преобразователя питается от соответствующего источника. Применяется обычно для изменения высокого напряжения на пониженное в цепях автоматики или релейной защиты. Использование связано с необходимостью ограждения низковольтных участков схем от повышенного напряжения.

Трансформаторы тока

Здесь первичная катушка получает питание от источника тока. Применяется для понижения тока в устройствах релейной защиты и измерителях. Вместе с тем, производится гальваническая развязка. Как правило, ток на вторичной катушке составляет величину 1А или 5А.

Первичную катушку включают в одну цепь с нагружением, подлежащем контролю, а к вторичной катушке подключаются приборы контроля, либо релейные устройства. Идеальный режим работы вторичной обмотки близок к короткому замыканию. Если происходит замыкание вторичной катушки, возникающее напряжение настолько велико, что повреждает подключенные к ней элементы.

Разделительные трансформаторы

Обмотки таких машин не связаны между собой. Такие преобразователи применяются для улучшения условий безопасности функционирования сетей при замыкании, срабатывает гальваническая развязка.

Читайте также:  Переключатель сеть генератор - советы электрика

Импульсные преобразователи

Предназначаются для реформирования сигналов в виде коротких (до 10 миллисекунд) импульсов с максимальным сохранением их формы.

В основном применяется для передачи импульсов, характерных прямоугольной формой.

Как правило, главное требование к этому преобразователю – передача кратковременного импульса в максимально сохраненной форме, при этом, изменение его амплитуды и полярности несущественно.

Согласующие трансформаторы

Используются при согласовании нагрузок различных участков с максимальным сохранением формы сигнала. Вместе с тем, использование такого преобразователя дает гальваническую развязку разных участков электронных схем.

Пик-трансформатор

Машина, обеспечивающая изменение синусоидальных напряжений в импульсные. При этом, происходит изменение полярности в каждом полупериоде.

Сдвоенный дроссель

Конструктивно выполняется в виде преобразователя с одинаковыми обмотками. Учитывая индуктивное влияние катушек друг на друга, он заметно эффективнее обычного дросселя. Распространены как входные фильтры БП блоков питания в звуковых схемах.

Источник: https://househill.ru/kommunikacii/electrika/stabilizatory/transformator.html

Измерительные трансформаторы напряжения. Устройство и работа

Измерительные трансформаторы напряжения предназначены для возможности измерения высокого напряжения электроустановок переменного тока путем снижения этого напряжения для подачи на защитные реле, приборы измерения и системы автоматики.

При отсутствии измерительных трансформаторов понадобилось бы применять приборы и реле с большими габаритными размерами, так как необходима надежная изоляция от высокого напряжения, которая увеличивает размеры устройств. Изготовить такое оборудование практически невозможно, так как напряжения линий могут достигать величины 110 киловольт.

Измерительные трансформаторы для замера напряжения дают возможность применять стандартные обычные приборы для измерений электрических параметров, при этом увеличивая их диапазон измерения. Защитные реле, подключаемые через эти трансформаторы, могут применяться обычного исполнения.

Гальваническая развязка, которую обеспечивают трансформаторы путем отделения измерительной цепи от высокого напряжения, позволяет создать необходимый уровень безопасности обслуживающего персонала.

Такие трансформаторы нашли свою популярность в устройствах высокого напряжения. От их качественного функционирования зависит степень точности учета расхода электрической энергии и электрических измерений, а также автоматических аварийных систем и защитных реле.

Устройство и работа

Измерительные трансформаторы устроены аналогично понижающим силовым трансформаторам, и состоят из металлического сердечника, выполненного из электротехнической листовой стали, первичной и вторичной обмоток. Трансформаторы могут оснащаться несколькими вторичными обмотками, в зависимости от конструкции и предъявляемых требований к трансформатору.

К первичной обмотке подключается высокое напряжение, а с вторичной обмотки снимается напряжение измерительными устройствами. Коэффициент трансформации такого устройства равен отношению первичного высокого напряжения к номинальному значению вторичного напряжения.

Если бы трансформатор функционировал абсолютно без потерь и с абсолютной точностью, то оба напряжения на обеих обмотках совпадали бы по фазе, и коэффициент трансформации был бы равен единице. Однако на практике коэффициент трансформации всегда меньше единицы, так как всегда имеются некоторые потери энергии при работе трансформатора.

Погрешность измерительного трансформатора зависит от:

  • Величины вторичной нагрузки.
  • Магнитной проницаемости сердечника.
  • Устройства магнитопровода.

Существуют методы снижения погрешности по напряжению путем снижения числа витков первичной обмотки, добавления различных компенсирующих обмоток.

Число витков первичной обмотки намного больше, чем вторичной. Измеряемое напряжение подается на первичную обмотку, к вторичной обмотке подключают различные измерительные приборы: вольтметры, ваттметры, фазометры и т. д.

Трансформаторы напряжения эксплуатируются в режимах, подобных холостому ходу. Это объясняется тем, что подключенный к вторичной обмотке прибор, например, вольтметр, обладает большим сопротивлением, и ток, протекающий по этой обмотке, очень незначителен.

Особенности подключения

Трансформаторы могут устанавливаться как на шинах подстанции, так и на каждом отдельном объекте. Перед электрическим монтажом необходимо осмотреть трансформатор на предмет необходимого уровня масла для масляных моделей, исправности армированных швов, целостности изоляции.

При проведении монтажа обе обмотки трансформатора должны быть завернуты в изоляцию, так как случайное касание выводов вторичной обмотки с проводами, находящимися под напряжением, может привести к возникновению на первичной обмотке опасного для жизни напряжения.

Для безопасности вторичную обмотку перед подключением заземляют. Это предотвращает возможность попадания высокого напряжения в цепи низкого напряжения при возможном пробивании изоляции.

Совет

Необходимо учитывать, что если к вторичной цепи подключить слишком много измерительных и других приборов, то величина тока вторичной цепи значительно увеличится, так же как и погрешность измерения. Вследствие этого необходимо следить, чтобы общая мощность присоединенных приборов не превзошла наибольший допустимый предел мощности, определенный инструкцией или паспортом трансформатора.

При превышении общей мощности допустимой величины целесообразно подключить дополнительный трансформатор, и переключить на него несколько приборов от первого трансформатора.

Трансформаторы должны иметь защиту от короткого замыкания, в противном случае при коротком замыкании обмотки перегреются, и изоляция будет повреждена.

Для этого в цепях всех незаземленных проводников подключают электрические автоматы, а также рубильники (для образования видимого разрыва цепи при ее отключении).

Первичную обмотку трансформатора чаще всего защищают путем установки предохранителей.

Разновидности

Измерительные трансформаторы классифицируются по нескольким признакам и параметрам. Рассмотрим основные из таких признаков и параметров.

По числу фаз:

По количеству обмоток:

  • Трехобмоточные.
  • Двухобмоточные.

По методу охлаждения:

  • С воздушным охлаждением (сухие).
  • С масляным охлаждением.

По месту монтажа:

  • Внутренние (для монтажа внутри помещений).
  • Внешние (для установки снаружи помещений).
  • Для распределительных устройств.

По классам точности: 0,2; 0,5; 1; 3

Измерительные трансформаторы с несколькими обмотками

К таким трансформаторам есть возможность подключения сигнализирующих устройств, которые подают сигнал о замыкании цепи с изолированной нейтралью, а также защитных устройств, защищающих от замыканий в цепи с заземленной нейтралью.

На рисунке «а» изображена схема с 2-мя вторичными обмотками. На рисунке «б» показана схема 3-х трехфазных трансформаторов. В них первичные и основные вторичные обмотки соединены по схеме звезды, а нейтральный проводник соединен с землей.

Обратите внимание

На приборы измерения могут подключаться три фазы и ноль от основных вторичных обмоток. Вспомогательные вторичные обмотки соединены «треугольником».

От этих обмоток поступает сумма напряжений фаз на дополнительные устройства: сигнальные, защитные и другие.

Основные схемы подключения

Наиболее простая схема с применением однофазного трансформатора изображена на рисунке 4 «а». Она используется в панелях запуска электродвигателей, на пунктах переключения напряжением до 10 киловольт, для подключения реле напряжения и вольтметра.

Схема по рисунку 4 «б» используется для неразветвленных цепей в электроустановках от 0,4 до 10 киловольт. Это дает возможность установить заземление вторичных цепей возле трансформаторов.

Во вторичной цепи, изображенной на рисунке 4 «в», подключен двухполюсный автомат вместо предохранителей. При срабатывании автомата его контакт замкнет сигнальную цепь «обрыв цепи».

Вторичные обмотки заземлены в фазе В на щите. Рубильником можно выключить вторичную цепь, и обеспечить при этом видимый разрыв.

Такая схема используется в электроустановках от 6 до 35 киловольт при разветвленных вторичных цепях.

На рисунке 4 «г» измерительные трансформаторы подключены схемой «треугольник-звезда». Это позволяет создать вторичное напряжение, необходимое для приборов автоматической регулировки возбуждения компенсаторов. Для надежности функционирования этих приборов предохранители во вторичных цепях не подключают.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/izmeritelnye-transformatory-napriazheniia/

Трансформаторы напряжения

УСТРОЙСТВО – ХАРАКТЕРИСТИКИ – РАСЧЕТ

Трансформатор — устройство для преобразования величины напряжения переменного тока. Работа трансформатора основывается на законе электромагнитной индукции.

Ток, протекающий по одной из обмоток, вызывает возникновение переменного магнитного поле в сердечнике, а оно наводит ЭДС в остальных обмотках.

Именно наличие переменного магнитного поля создает условия для работы трансформатора. На постоянном токе трансформатор работать не может. В случае подключения трансформатора к источнику постоянного напряжения, переменное магнитное поле не создается, следовательно нет причины для образования ЭДС.

В таком случае ток первичной обмотки определяется только ее омическим сопротивлением.

Важно

Трансформатор преобразует напряжение при сохранении частоты и баланса мощностей на входе и выходе с учетом КПД. Также при помощи трансформаторов осуществляется гальваническая развязка по цепям питания.

Читайте также:  Электропроводка в панельном доме схема - советы электрика

Большинство электронной аппаратуры требует питания, отличного от напряжения сети. В большинстве случаев это напряжение значительно ниже и может иметь несколько различных значений.

Трансформатор с несколькими вторичными обмотками позволяет выполнить максимально простое преобразование величины напряжения с той оговоркой, что питающее напряжение переменное.

В случае необходимости преобразовывать постоянное напряжение, приходится сначала преобразовывать его в переменное, что требует определенных схемотехнических решений. В таком случае использование трансформаторов оправдано только наличием гальванической развязки между обмотками.

Устройство трансформатора напряжения

Основные узлы, которые входят в трансформатор это сердечник и обмотки. Сердечники трансформаторов бывают двух типов — броневые и стержневые. Для работы с низкочастотными напряжениями, в том числе и 50 Гц применяются стержневые магнитопроводы. В свою очередь они подразделяются на:

  • Ш-образные;
  • П-образные;
  • тороидальные.

Для изготовления сердечника используется специальное трансформаторное железо. От качества железа во многом зависят параметры трансформатора, такие как ток холостого хода (ТХХ) и КПД. Сердечник набирается из тонких листов железа, изолированных друг от друга слоем окиси или лака. Это делается для того, чтобы уменьшить потери в сердечнике за счет вихревых токов.

Как Ш-образный, так и П-образный сердечники могут собираться из отдельных пластин, а могут быть использованы уже готовые половинки, сделанные из навитых на специальную оправку сплошных лент железа, поклеенных и разрезанных на две части — витые сердечники. Такие сердечники называются ПЛ.

У каждого из типов свои достоинства и недостатки:

Наборные сердечники.Наиболее часто используются для сборки магнитопровода произвольного сечения, которое ограничивается только шириной пластин.

Следует иметь ввиду, что наилучшие параметры имеют трансформаторы с поперечным сечением сердечника, близким к квадратному.

Недостатки — необходимость в плотном стягивании, повышенное магнитное поле рассеивания трансформатора и низкий коэффициент заполнения окна катушки (реальная площадь металла в сердечнике меньше геометрических размеров из-за неплотного прилегания пластин).

Витые.Собираются еще проще, поскольку весь сердечник состоит из двух частей для П-образного магнитопровода и четырех для Ш-образного. Характеристики значительно лучше, чем у наборного магнитопровода.

Недостатки — соприкасающиеся поверхности должны иметь минимальный зазор во избежание ослабления магнитного поля.

При ударах пластины половинок зачастую отслаиваются и их очень трудно совместить для плотного прилегания.

Существует только определенный ряд размеров магнитопроводов.

Тороидальные.Представляют собой кольцо, свитое из ленты трансформаторного железа Имеют самые лучшие характеристики из всех типов сердечников, минимальный ТХХ и практически полное отсутствие магнитного поля рассеивания.

Основной недостаток — сложность намотки, особенно проводов большого диаметра.

Классический трансформатор имеет одну первичную обмотку и одну или несколько вторичных. Обмотки изолируются друг от друга для исключения вероятности между обмоточного пробоя. Как первичная, так и вторичные обмотки могут иметь отводы.

В Ш-образных трансформаторах все обмотки наматываются на центральном стержне, а в П-образном первичная может размещаться на одном стержне, а вторичная на другом. Гораздо чаще обмотки делятся пополам и наматываются на обеих стержнях.

Затем обе половины обмоток соединяются последовательно.

Такая намотка улучшает характеристики трансформатора и сокращает количество провода для обмоток.

В начало

Основные технические характеристики

Основные характеристики трансформатора:

  • входное напряжение;
  • значения выходных напряжений;
  • мощность;
  • напряжение и ток холостого хода.

Отношение напряжений на первичной и вторичной обмотках представляет собой коэффициент трансформации. Он зависит только от соотношения количества витков в обмотках и остается постоянным в любых режимах работы.

Мощность трансформатора зависит от сечения сердечника и диаметра проводов в обмотках (соответственно – допустимого тока). Мощность со стороны первичной обмотки всегда равна сумме мощностей вторичных за вычетом потерь в обмотках и сердечнике.

Напряжение холостого хода — это напряжение на вторичных обмотках без нагрузки. Разница между ним и напряжением под нагрузкой характеризует потери в обмотках за счет сопротивления провода.

Таким образом, чем толще проводники в обмотках, тем меньше будут потери и меньше разница в напряжениях.

Совет

Величина тока холостого хода зависит, в основном от качества сердечника. В идеальном трансформаторе ток, проходящий через первичную обмотку, создает переменное магнитное поле в сердечнике, которое, в свою очередь, за счет магнитной индукции создает ЭДС противоположного направления.

Индуцированная ЭДС компенсирует подаваемое напряжение и ТХХ равен нулю. В реальных условиях, за счет потерь в сердечнике, величина ЭДС всегда меньше первичного напряжения, в результате чего возникает ТХХ. Для уменьшения тока для изготовления сердечника нужен материал высокого качества, между пластинами должен отсутствовать немагнитный зазор.

Последнему требованию в максимальной степени соответствуют тороидальные сердечники — в них немагнитный зазор отсутствует.

В начало

Расчет трансформатора напряжения

Как показывает опыт и практика, точный расчет трансформатора напряжения себя не оправдывает. Точность нужна только при определении количества витков для получения нужного коэффициента трансформации. Диаметр проводов обмоток должен соответствовать или превосходить минимально допустимому по условиям нагрева.

Общая последовательность расчета трансформатора такова:

  • определение мощности трансформатора;
  • подбор сердечника с сечением максимально близкого к расчетному, но не меньше его;
  • определение количества витков катушек, приходящихся на один вольт напряжения;
  • расчет количества витков для каждой обмотки;
  • расчет сечения проводов обмоток.

Мощность трансформатора определяется суммированием мощностей всех обмоток за исключением первичной. Для каждой из них — это произведение напряжения на максимальный ток потребления. Для расчета сечения сердечника нужна габаритная мощность трансформатора, которая учитывает КПД.

Рассматриваемые трансформаторы имеют КПД от 70% при мощности до 150 Вт и до 90 % при большей мощности. Таким образом, чтобы получит габаритную мощность нужно мощность вторичных обмоток умножить на коэффициент 1.3 — 1.1.

Площадь поперечного сечения можно найти как квадратный корень из габаритной мощности. Имея значение площади можно подобрать из таблиц готовый сердечник. Если планируется разборный, то исходя из размеров имеющихся пластин можно вычислить необходимую толщину набора.

Как уже говорилось выше, сечение должно быть близким к квадрату.

Наибольшие затруднения вызывает нахождение числа витков. Для этого нужно сначала рассчитать сколько витков должно приходиться на один вольт напряжения. Это значение будет различаться в зависимости от площади сечения сердечника. Следует иметь ввиду, что при одинаковом сечении у магнитопроводов разных типов это значение также будет различно.

Можно воспользоваться следующей формулой: N = К/S,

где N — количество витков на вольт, S — площадь сечения сердечника в см2, K — коэффициент, зависящий от материала и типа сердечника.

Значение коэффициента К:

  • для наборных сердечников — 60;
  • для типов ПЛ — 50;
  • для тороидальных сердечников 40.

Как видим, количество витков у тороидального трансформатора будет минимальным. Умножая число витков на вольт на требуемое напряжение каждой обмотки, получим значение количества витков. Для компенсации потерь напряжения, количество витков вторичных обмоток нужно увеличить на 5%.

У мощных трансформаторов (более 150 Вт) этого делать не нужно.

Сечение проводов также определяется по упрощенной формуле: 0.7√I, где I — ток обмотки.

Провод нужно брать ближайшего к расчетному сечения (можно больше, но не меньше).

В случае сомнений по поводу того, поместится ли провод в обмотке, можно посчитать, сколько витков уложится в один слой и определить количество слоев и их общую толщину для каждой из обмоток. Это справедливо только для Ш-образных и П-образных трансформаторов.

Обратите внимание

В тороидальных количество витков в каждом последующем случае будет меньше, чем в предыдущем за счет уменьшения внутреннего диаметра.

В начало

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/transformatory_naprjazhenija.html

Ссылка на основную публикацию
Adblock
detector