Параметры автоматических выключателей – советы электрика

Автоматический выключатель — устройство, характеристики часть2

2015-10-21Статьи 

Продолжаем тему автоматических выключателей. В первой части статьи мы рассмотрели устройство и принцип действия, на этот раз подробнее остановимся на основных характеристиках автоматических выключателей.

Основными характеристиками для выбора автоматического выключателя являются:

— Количество полюсов

— Рабочее напряжение

— Номинальный ток

— Время-токовая характеристика

— Отключающая способность (ток короткого замыкания)

Количество полюсов

Я думаю, с этим параметром все понятно. В случае однофазной сети устанавливаются автоматы однополюсной или двухполюсной. Для трехфазной сети применяют трех и четырехполюсные автоматы.

Рабочее напряжение

Следующий параметр — рабочее напряжение автомата. Этото параметр должен быть равным или больше номинального напряжения сети.

Номинальный ток

Этот параметр показывает значение допустимого тока автомата, при превышении которого он отключится и разомкнет цепь. Номинальный ток автомата выбирается в зависимости от сечения кабеля и мощности потребителей.

Например нам надо подобрать автоматический выключатель для комнаты. Для начала определим общую суммарную мощность. Для этого необходимо суммировать мощность всех электроприборов, которые находятся в комнате. Предположим общая мощность составляет 4000 Вт. Далее рассчитаем силу тока по формуле:

где Р — суммарная мощность всех электроприборов, Вт; U — напряжение сети.

В нашем случае, разделив 4000 на 220 получим 18,18 А. Зная величину тока, подбираем сечение провода. Для 18,18 А выбираем сечение провода 1,5 кв.мм. Для данного сечения подбираем ближайшее значение номинального тока автомата и округляем в меньшую сторону. Значение номинального тока автомата будет составлять 16 А.

Время-токовая характеристика

Этот параметр показывает за какой промежуток времени автомат отключится при прохождении через него тока, превышающего номинальный ток.

Самыми распространенными типами время-токовых характеристик являются:

— Тип B (кратковременное увеличение тока в 3-5 раз от номинального) применяются для защиты потребителей с преимущественно активной нагрузкой (цепи освещения, обогреватели, печи). Применяются в основном в квартирах и жилых помещениях.

— Тип C (кратковременное увеличение тока в 5-10 раз от номинального) наиболее широко применяемые. Предназначены для защиты цепей установок с небольшими пусковыми токами — розетки, холодильники, кондиционеры,газоразрядные лампы.

— Тип D (кратковременное увеличение тока в 10-50 раз от номинального) применяются в основном для защиты электродвигателей с частым запуском и большим пусковым током. Используются чаще всего на промышленных производствах.

Помимо этих типов существуют еще типы A, K и Z, но так как применяются они очень редко, в данной статье рассматривать их не будем.

Отключающая способность

Данная характеристика показывает величину максимального тока, при протекании которого, автомат отключится, не потеряв свою работоспособность т.е подвижные контакты автомата не приварятся к неподвижным вследствие возникновения и гашения дуги при размыкании.

Чем выше будет отключающая способность автомата, тем больше вероятность, что он прослужит дольше. Но тут не надо впадать в крайности учитывая, что чем больше будет максимальный ток срабатывания автомата, тем выше его цена.

Для жилых помещений вполне подойдут автоматы с током срабатывания 4,5 или 6 кА.

В завершении статьи хотел бы напомнить, что выбор автоматического выключателя — дело ответственное, так как в случае возникновения аварийной ситуации правильно выбранный автоматический выключатель защитит не только ваше имущество, но и вас.

Источник: http://electric-blogger.ru/stati/avtomaticheskij-vyklyuchatel-ustrojstvo-xarakteristiki-chast2-3.html

Выбор автоматического выключателя

Старая версия статьи здесь

Автоматические выключатели одновременно выполняют функции защиты и управления: защищают кабели, провода, электрические сети и потребителей от перегрузки и короткого замыкания (сверхтоков короткого замыкания), а также обеспечивают нормальный режим протекания электротока в цепи и осуществляют управление участками электроцепей.

Автоматические выключатели выполняют одновременно функции защиты и управления, бывают однополюсные, двухполюсные, трехполюсные и четырехполюсные.

Автоматы имеют защитные (спусковые) устройства двух типов: тепловое реле с выдержкой времени для защиты от перегрузки и электромагнитное реле для защиты от короткого замыкания.

Основные конструктивные узлы автоматических выключателей: главная контактная система, дугогасительная система, привод, расцепляющее устройство, расцепители и вспомогательные контакты.

Обратите внимание

Расцепители представляют собой реле прямого действия, служащее для отключения автоматического выключателя (без выдержки времени или с выдержкой) через механизм свободного расцепления, который в свою очередь состоит из рычагов, защелок, коромысел и отключающих пружин.

Автоматический выключатель Hager с самозажимными клеммами в разрезе

Только правильно выбранный автоматический выключатель сможет защитить Вас и сработает в случае аварии или при опасной нагрузке на вашу электропроводку. Неверный выбор может привести к пожару или поражению электрическим током.

Не рекомендуется применять “автомат” с видимыми повреждениями корпуса, а также устанавливать автоматические выключатели с завышенным номинальным током срабатывания. Нужно выбирать автоматический выключатель строго под параметры вашей электропроводки и потребителей, только известных производителей и желательно в специализированных магазинах.

Выбираются автоматические выключатели по номинальному току, напряжению и по условиям эксплуатации (исходя из типа исполнения). Если необходимо выбрать автомат для подключения известных нагрузок необходимо рассчитать ток. Автоматический выключатель также должен отключить напряжение при коротком замыкании.

Характеристики срабатывания (отключения) и эксплуатации установлены в европейских стандартах на автоматические выключатели: DIN VDE 0641 часть 11/8.

92, EN 60 898, IEC 898 (DIN – Немецкий промышленный стандарт, VDE – Технические правила Общества немецких электриков, EN – Европейский стандарт, IEC – Международная электротехническая комиссия) и в российском стандарте ГОСТ Р 50345-99.

Согласно данным стандартам защитные устройства могут быть трех характеристик срабатывания:

    • Автоматический выключатель с характеристикой срабатывания B рекомендуется применять преимущественно для защиты оборудования, кабелей и цепей в жилых домах (как правило, цепи освещения и розеток)
    • Автоматический выключатель с характеристикой срабатывания C рекомендуется применять  для защиты оборудования, кабелей и цепей в жилых домах (цепи освещения и розеток), а также для защиты цепей с потребителями, обладающими большим пусковым током (группы ламп, электродвигатели и т.д.)
    • Автоматические выключатели с характеристикой срабатывания D преимущественно применяются для защиты кабелей и цепей с потребителями с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)

Стоит отметить, что подавляющее большинство автоматов на российском рынке предлагается с характеристикой С, с характеристикой B продаются как правило автоматы на малые токи, остальные поставляются в основном под заказ.

Линейка автоматических выключателей Sassin серии 3SB1-63

Согласно стандарту DIN VDE 0100 часть 430/11.91 и его приложений (для устройств защиты кабелей и электрических цепей от перегрузки), защита от чрезмерного нагрева (тепловая защита) в случае перегрузки обеспечивается, если выполняются следующие условия:

    • Потребляемый ток цепи должен быть меньше или равным номинальному току автоматического выключателя, который в свою очередь должен быть не больше, чем максимально допустимая нагрузка электрической цепи или кабеля (Ib 1час  5*In > 0,1 с  1,45*In  < 1час  10*In < 0,1 с  D  1,13*In  > 1час  10*In > 0,1 с  1,45*In  < 1час  20*In < 0,1 с

      То есть при перегрузке до 13% номинального тока, автоматический выключатель должен отключиться не ранее, чем через час (т.е. выдерживать перегрузку 13% минимум в течение часа), а при перегрузке до 45%, тепловое реле должно отключить “автомат” в течение часа.Трехкратную перегрузку автоматический выключатель с характеристикой B должен как минимум выдерживать 0,1 секунду, а при пятикратной перегрузке встроенное электромагнитное реле должно отключить автоматический выключатель менее чем за 0,1 секунду.Из всего этого видно, что номинальный ток выбранного Вами автоматического выключателя, как минимум, не должен превышать допустимых токовых нагрузок для Вашей электропроводки, поэтому, приобретая автоматические выключатели, будьте внимательны с выбором тока. Если Вам продавец советует выбрать автоматический выключатель с током не менее 25А, чтобы при включенном холодильнике, обогревателе, стиральной машине и т.п. его не выбивало, то помните, что в большинстве квартир проводка выполнена из алюминия сечением 2.5 мм2, а такой провод выдерживает максимум 24А. В этом случае единственным разумным решением будет не включать одновременно, например, микроволновую печь и электрочайник или стиральную машину, а не заменять автомат 16А на 25А. Не забывайте, что автоматический выключатель должен выполнять свое основное предназначение – защищать Вашу сеть от перегрузок.Аналогичным образом подбирается и номинальный ток для дифференциального автомата (так как он объединяет в себе УЗО и автоматический выключатель) – выбор дифференциального автоматического выключателя.При использовании в цепи постоянного тока характеристики срабатывания теплового расцепителя остаются теми же, что и в сетях переменного напряжения. А характеристики максимального испытательного тока электромагнитного расцепителя изменятся.Значения максимального испытательного тока электромагнитного расцепителя.

      Характеристика выключения
      B C D
      АС/50 Гц (переменный ток) DC (постоянный ток) АС/50 Гц (переменный ток) DC (постоянный ток) АС/50 Гц (переменный ток)
      Минимальный испытательный ток 3,0*In 3,0*In 5*In 5*In 10*In
      Максимальный испытательный ток 5,0*In 7,5*In 10*In 15*In 20*In

      Допустимая нагрузка на автоматические выключатели, установленные в ряд один за другимПоправочный коэффициент (K) в случае взаимного теплового влияния автоматических выключателей, установленных рядом друг с другом, при расчетной нагрузке.

       Число автоматических выключателей  Коэффициент К
       1  1
       2…3  0,95
       4…5  0,9
       ≥6  0,85

      Влияние окружающей температуры на тепловое срабатывание автоматического выключателя (приведенные в столбце 30°С токи соответствуют номинальным токам автоматического выключателя, так как при этой температуре задается режим срабатывания). В таблице приведены уточненные значения расчетного тока в зависимости от окружающей температуры.

      In (А) 30°С 35°С 40°С 45°С 50°С 55°С 60°С
      0,5 0,5 0,47 0,45 0,4 0,38
      1 1 0,95 0,9 0,8 0,7 0,6 0,5
      2 2 1,9 1,7 1,6 1,5 1,4 1,3
      3 3 2,8 2,5 2,4 2,3 2,1 1,9
      4 4 3,7 3,5 3,3 3 2,8 2,5
      6 6 5,6 5,3 5 4,6 4,2 3,8
      10 10 9,4 8,8 8 7,5 7 6,4
      16 16 15 14 13 12 11 10
      20 20 18,5 17,5 16,5 15 14 13
      25 25 23,5 22 20,5 19 17,5 16
      32 32 30 28 26 24 22 20
      40 40 37,5 35 33 30 28 25
      50 50 47 44 41 38 335 32
      63 63 59 55 51 48 44 40

      См. каталог:Модульные устройства коммутации и управления HAGERАвтоматические выключатели, УЗО и дифф. автоматы HagerЛинейные защитные автоматы – для защиты кабелей и проводовАвтоматические выключатели Hager HMF на токи 80-125ААвтоматические выключатели SASSINАвтоматы дифференциальные SASSIN серии C45L, C45N

    Источник: http://electromirbel.ru/vybor_avtomaticheskogo_v

    Выбор автоматического выключателя. По каким параметрам электрики подбирают “автоматы”

    Это устройство защищает проводку от короткого замыкания, а также от подключения избыточной нагрузки. Выбор автоматического выключателя производится с учетом следующих параметров.

    Номинальный ток автоматического выключателя

    Сколько ампер на миллиметр? Возможности вашей проводки определяют значение номинального тока. А какие провода для нее потребуются, выясняют следующим образом. Рассчитывают предполагаемую максимальную нагрузку, то есть суммарную потребляемую мощность для всех электроприборов в помещении. А затем, используя полученные данные, выбирают нужные характеристики проводов:

    • для медного провода допустимая сила тока составляет 10 А на 1 мм² сечения,
    • для алюминиевого провода — 6 А на 1 мм² сечения. Из-за высокого удельного сопротивления и низкой механической прочности жилы алюминиевые провода в настоящее время практически не используются. Так что дальнейшие расчеты приведены только для медных проводов.

    Формула расчета максимальной силы тока I=P:U

    или мощность/ напряжение сети (в нашем случае – 220 В).


    Например, если мощность всех электроприборов в помещении равна 5 кВт, полученный результат составит примерно 22,7 А. Т.е. для этой цепи электропитания потребуются провода сечением 2,5 мм² (на жаргоне – два с половиной квадрата). Возможностям такой проводки будет идеально соответствовать автоматический выключатель на 25 А.

    Характеристики автоматических выключателей

    Чувствительность к перегрузкам. Этот параметр характеризуется буквенной маркировкой от A до D. Он показывает, как быстро устройство реагирует на избыточную нагрузку в сети: отключает питание сразу или с небольшой задержкой.

    Автоматы имеют несколько характеристик чувствительности

    Почему не сразу? На практике необходимость задержки автомата объясняется наличием пусковых токов у некоторых приборов (например, у агрегата холодильника, электродвигателя стиральной машины и т.д.).В момент запуска этих устройств значение силы тока в цепи их питания во много раз превышает номинальные параметры.

    Такой скачок длится доли секунды и не представляет никакой угрозы для проводов, однако автомат со слишком высокой чувствительностью успевает отреагировать на перегрузку в сети и отключает подачу напряжения.

    Подобные излишние меры предосторожности причинят массу неудобств жильцам дома, которые будут вынуждены бегать к распределительному щитку и дергать за рубильник каждый раз при включении холодильника или стиральной машины.

    • Характеристика А обозначает наиболее высокую чувствительность. Такие устройства реагируют на перегрузку практически мгновенно и применяются для защиты цепей питания особо точных приборов. Для бытовых нужд они не используются.
    • Характеристика B указывает на наличие небольшой временной задержки срабатывания автомата. В бытовых условиях такое приспособление можно применять для защиты сети питания, к которой подключены сложные и дорогостоящие устройства типа плазменной панели, компьютера и т.д.
    • Характеристикой C обладают автоматические выключатели, наиболее подходящие для широкого использования в быту. Обычно именно они применяются для защиты отдельных участков цепи электропитания внутри дома. Задержка срабатывания такого прибора является вполне достаточной для того, чтобы он не реагировал на мгновенные перегрузки в сети, обесточивая последнюю только в случае серьезной неисправности.
    • Характеристика D свидетельствует о том, что автомат наименее чувствителен к перегрузкам. Как правило, подобное устройство устанавливают на вводе электроэнергии в дом, в самом первом распределительном щитке, и оно контролирует всю электрическую сеть здания. По сути, этот аппарат является дублирующим: он срабатывает только в том случае, если следующий за ним автомат (защищающий отдельный участок цепи в конкретном помещении) по тем или иным причинам не отреагировал на возникшую неисправность.

    В яблочко! По мнению специалистов, оптимальное значение отключающей способности (обозначается как Ics или Icn) для бытовых автоматов составляет от 3 до 4,5 кА. Эти цифры показывают, что силовые контакты не будут повреждены, а специальная дугогасящая камера сможет эффективно отвести электрический разряд от их поверхностей при силе тока, доходящей до 3–4,5 кА (3000–4500 А). На фото: автоматический выключатель от фабрики ABB.

    Типы автоматических выключателей

    Номинальная отключающая способность. Этот параметр показывает стойкость его силовых контактов к протеканию токов большой силы и к подгоранию в момент разрыва цепи.

    В последнем случае возникает так называемая дуга, похожая на разряд молнии, что сопровождается очень высокой температурой (тысячи градусов). Следовательно, чем выше значение отключающей способности автомата, тем более качественный материал применяется при изготовлении его деталей и тем дольше он прослужит.

    Само собой, это отражается и на стоимости изделия. Возможно, подобные расходы не являются оправданными, так как токи значительной силы возникают только в результате короткого замыкания, что на практике происходит довольно редко.

    В статье использованы изображения , , , ,

    Источник: http://www.4living.ru/items/article/circuit-breaker/

    Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

    Автоматический выключатель выбирается исходя из следующих условий:

    1. Соответствие номинального напряжения выключателя Uн к номинальному напряжению сети Uс: Uн, Uс. (6.1)

    2. Соответствие номинального тока расцепителя Iн.расц номинальному току нагрузки Iдн: Iн.расц , Iдн. (6.2)
    3. Соответствие номинального тока расцепителя Iн.расц максимальному рабочему току Iраб.макс группы электроприемников (для вводных выключателей питания сборок и щитов) в длительном режиме: Iн.расц , Iраб.макс. (6.3).

    4. Условие предельной коммутационной стойкости (ПКС): каталожное значение ПКС должно быть не менее максимального значения тока короткого замыкания (Iкз.макс), протекающего в цепи в момент расхождения контактов выключателя: ПКС > Iкз.макс. Это необходимо, чтобы автоматический выключатель смог выдержать токовые перегрузки при коротком замыкании в цепи.

    Защита от перегрузки

    Ток срабатывания защиты от перегрузки определяется из условий возврата защиты после окончания пуска или самозапуска электродвигателя:
    где kн – коэффициент надежности, учитывающий некоторый запас по току, неточности настройки и разброс срабатывания защиты (1,0 – для современных АВ фирмы Schneider Electric, 1,15 – для АЕ20, А3700; 1,25 – для А3100, АП-50; 1,2 , 1,35 – для ВА51);

    kв – коэффициент возврата защиты.

    Защита считается эффективной, если:

    Для выключателей с тепловым и электромагнитным (комбинированным) расцепителем условие (6.5) обеспечивается автоматически при выборе номинального тока расцепителя по условию (6.2).

    Важно

    Наилучшая защита от перегрузки обеспечивается, если удается подобрать выключатель, имеющий Iн.расц = Iдн.

    В этом случае, имея в виду, что для термобиметаллических тепловых реле kв = 1, ток срабатывания защиты от перегрузки составит:

    Токовая отсечка (для АВ с двухступенчатой ВТХ)

    Токовую отсечку выключателя отстраивают от пускового тока электродвигателя, который состоит из периодической составляющей, почти неизменной в течение всего времени пуска, и апериодической составляющей, затухающей в течение нескольких периодов. Несрабатывание отсечки при пуске двигателя обеспечивается выбором токовой отсечки по выражению:

    где kн.пуск = kз·kа·kр – коэффициент надежности отстройки отсечки от пускового тока электродвигателя;

    1,05 – коэффициент, учитывающий, что в нормальном режиме может быть на 5% выше номинального напряжения электродвигателя;

    kз – коэффициент запаса;

    kа – коэффициент, учитывающий наличие апериодической составляющей в пусковом токе электродвигателя;

    kр – коэффициент, учитывающий возможный разброс тока срабатывания отсечки относительно уставки.

    Мгновенная токовая отсечка (для АВ с трехступенчатой ВТХ)

    Для выключателей с трехступенчатой защитной характеристикой мгновенную отсечку выключателя отстраивают от пикового значения пускового тока электродвигателя:

    Кроме того, токовая отсечка должна надежно защищать электродвигатель от минимального тока КЗ при повреждении в конце кабельной линии: где (1)

    к.R I – минимальный ток однофазного КЗ в конце кабеля, вычисленный с учетом токоограничивающего действия дуги в месте повреждения.

    Выбор уставок автоматических выключателей питания сборок и щитов

    Выбор тока срабатывания отсечки выполняется по приводимым ниже условиям, из которых принимается наибольшее полученное значение. Соответствие данным условиям позволяет обеспечить селективную работу автоматических выключателей в разных частях электрический цепи.

    1) Несрабатывание при максимальном рабочем токе Iраб.макс с учетом его увеличения в kсзп раз при самозапуске электродвигателей:

    где kн = kз·kа·kр – коэффициент надежности отстройки отсечки от тока самозапуска.

    Ток самозапуска Iсзп = kсзп· Iраб.макс определяется из расчетов самозапуска. При этом без ущерба для точности расчетов допускается считать, что электродвигатели запускаются из состояния покоя.

    При отсутствии данных расчетов самозапуска, для отдельных сборок Iсзп принимается приближенно равным сумме пусковых токов электродвигателей и другой нагрузки сборки, участвующих в самозапуске:

    где kil – кратность пускового тока l-ого двигателя с номинальным током Iднl.

    С другой стороны, в соответствии с источником [11]:

    где Iдн – суммарный номинальный ток электродвигателей;

    ki – усредненное значение кратности пусковых токов электродвигателей.

    Также существует третий способ расчета Iсзп:

    где kii – кратность пускового тока i-ого двигателя номинальной мощностью Рднi.

    Ввиду того, что среди прочих проверок отстройка от тока самозапуска имеет, как правило, определяющее значение, предпочтение следует отдать расчетам самозапуска с помощью ЭВМ.

    2) Несрабатывание при полной нагрузке щита (сборки) и пуске наиболее мощного электродвигателя:

    где kн – коэффициент надежности отстройки отсечки от тока самозапуска;

    раб макс i I – сумма максимальных рабочих токов электроприемников, питающихся от щита или сборки, кроме двигателя с наибольшим пусковым током Iпуск.макс.

    Выбор автоматических выключателей для защиты одиночных асинхронных электродвигателей

    Применение изложенной методики продемонстрируем на примере защиты асинхронных электродвигателей 0,4 кВ энергоблока 63 МВт газомазутной ТЭЦ автоматическими выключателями Compact NS с электронными расцепителями. Электродвигатели и их параметры перечислены в табл.6.1.

    На основании условий (6.1), (6.2) и (6.4) подберем автоматические выключатели и расцепители, результаты представим в табл.6.1.

    Так как рассматриваются автоматические выключатели зарубежного производства, для описания их параметров перейдем к обозначениям МЭК:

    • номинальный ток автоматического выключателя – Iн = In;

    • номинальное напряжение автоматического выключателя Uн = Un;

    • номинальный ток расцепителя – Iн.расц = Ir;

    • предельная коммутационная способность ПКС = Icu;

    • пусковой ток электродвигателя Iпуск = Ia;

    • пиковое значение пускового тока электродвигателя Iпуск.max = Iр.

    Совет

    Переход к другим обозначениям обусловлен спецификой наименования параметров АВ и расцепителей, ориентированной на зарубежную нормативно-техническую документацию.

    Более подробно о характеристиках автоматических выключателей можно почитать в нашей статье.

    Источник: https://pue8.ru/vybor-elektrooborudovaniya/223-vybor-avtomaticheskih-vyklyuchateley.html

    О выборе автоматического выключателя

    Автоматические выключатели (называемые в быту сокращенно «автоматы») – электротехническое коммутационное и управляющее оборудование преднозначенное для защиты и включения электрооборудования или отдельных линий электропотребления.

    Выполняемые функции

    Они выполняют три функции:

    • включать и отключать электротехнические приборы (как обычный выключатель);
    • отключать работающее оборудование от сети при резко возрастающих перегрузках, возникающих в момент короткого замыкания в домашней электропроводке;
    • отключать работающие электроприборы в безопасные для их функционирования сроки при появлении токов перегрузки или ненормальных падениях напряжения в сети, появляющихся при включении мощных электродвигателей и электроприборов.

    В двух словах, автоматический выключатель отключает подачу электроэнергии в случаях изменения параметров тока и напряжения, которые могут привести к неисправности работающих электроприборов или повреждению провода питающей линии.

    Конструкция автоматов

    По конструкции автоматы, используемые в быту, выделены в три группы: воздушные, в литом корпусе и модульные. Воздушные выключатели (в корпусе с вентиляционными отверстиями) используются в сухих и не очень запыленных условиях.

    Литой корпус автоматов защищает от повышенной влажности (можно использовать в подключении оборудования бани). Модульный автоматический выключатель является вариантом воздушного автомата, стандартизированным по размерам.

    Ширина корпуса модульного выключателя кратна 17,5 мм. Благодаря легкости монтажа модульные автоматы для электропроводки в квартире считаются самым оптимальным выбором.

    Как выбрать автоматический выключатель по мощности и току

    Для выбора автоматического выключателя требуется необходимый минимум информации, позволяющей правильно оценить рабочие характеристики будущей защиты.

    Первичная информация для правильного выбора:

    1. Суммарная мощность потребляющих электроэнергию аппаратов, одновременно подключенных к сети и работающих в обычном режиме.
    2. Резерв на возможное подключение дополнительных потребителей.
    3. Типы и характеристики проводов.
    4. Условия работы.

    Основные характеристики автоматических выключателей:

    • номинальный ток автоматического выключателя (не должен превышать номинального тока электропроводки, находящейся под защитой автомата);
    • количество полюсов (выбирается в зависимости от проводки, однофазной или трехфазной);
    • время – токовая характеристика (скорость срабатывания, с которой АВ реагирует на превышение тока в сети над номинальным рабочим током и время этого нарушения);
    • предельный ток короткого замыкания (в случае КЗ ток в сети на очень короткое время вырастает до нескольких тысяч ампер. Автоматический выключатель при этом должен сразу отключиться;
    • тип тока и рабочее напряжение автомата (тип тока – переменный или постоянный, рабочее напряжение должно соответствовать напряжению сети, 220 или 380 В.)

    Источник: https://ks5.ru/elektrichestvo/elektrooborudovanie/o-vyibore-avtomaticheskogo-vyiklyuchatelya.html

    Особенности работы автоматических выключателей с микропроцессорными расцепителями

    Ни для кого не секрет, что автоматические выключатели это не просто рубильники, которые  пропускают рабочий ток и обеспечивают два состояния электрической цепи: замкнутое и разомкнутое.

    Автоматический выключатель – это электрический аппарат, который в режиме реального времени «отслеживает» уровень протекающего тока в защищаемой цепи и отключает ее при превышении током определенного значения.

    Самым распространенным сочетанием в автоматических выключателях является комбинация теплового и электромагнитного расцепителя. Именно эти два вида расцепителей обеспечивают основную защиту цепей от сверхтоков.

    Тепловой расцепитель предназначен для отключения токов перегрузки электрической цепи. Тепловой расцепитель конструктивно состоит из двух слоев металлов, обладающих различными коэффициентами линейного расширения.

    Это и позволяет пластине изгибаться при нагреве и воздействовать на механизм свободного расцепления, в конечном итоге, отключая аппарат.

    Такой расцепитель еще называют термобиметаллическим расцепителем по названию основного элемента – биметаллической пластины.

    Однако этот вид расцепителя обладает существенным недостатком – его свойства зависят от температуры окружающей среды.

    То есть, при слишком низкой температуре даже если цепь будет перегружена — тепловой расцепитель автоматического выключателя может не отключить линию.

    Возможна и обратная ситуация: в очень жаркую погоду автоматический выключатель может ложно отключать защищаемую линию, за счет нагрева биметаллической пластины окружающей средой. К тому же тепловой расцепитель потребляет электрическую энергию.

    Электромагнитный расцепитель состоит из катушки и подвижного стального сердечника, удерживаемого пружиной.

    При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления.

    Обратите внимание

    В нормальном режиме работы в катушке также наводится электромагнитное поле, однако его силы не хватает, чтобы преодолеть сопротивление пружины и втянуть сердечник.

    Устройство механизма электромагнитного расцепителя показано на примере АП50Б

    Этот вид расцепителя не обладает таким большим потреблением электрической энергии, как тепловой расцепитель.

    В настоящее время широкое распространение получили электронные расцепители на базе микроконтроллеров. С их помощью можно осуществлять точную настройку следующих параметров защиты:

    • уровень рабочего тока защиты
    • время защиты от перегрузки
    • время срабатывания в зоне перегрузки с функцией «тепловой памяти» и без нее
    • ток селективной  отсечки
    • время селективной токовой отсечки

    Реализованная функция проведения самотестирования работоспособности механизма свободного расцепления с помощью кнопки ТЕСТ позволяет проводить проверку аппарата потребителем.

    Регулировка параметров настройки электрической цепи на лицевой панели устройства позволяет персоналу без лишнего труда понять, как настроена защита отходящей линии.

    С помощью поворотных переключателей на лицевой панели устанавливается уровень рабочего тока цепи. Регулировка уставки рабочего тока расцепителя IR устанавливается в кратности: 0,4; 0,45; 0,5; 0,56; 0,63; 0,7; 0,8; 0,9; 0,95; 1,0 к номинальному току  выключателя.

    Существует два режима работы полупроводникового расцепителя при перегрузке электрической цепи:

    • с «тепловой памятью»;
    • без «тепловой памяти»

    «Тепловая память» является эмуляцией работы теплового расцепителя (биметаллической пластины): микропроцессорный расцепитель программным способом задает время, которое потребовалось бы для остывания биметаллической пластины. Данная функция позволяет оборудованию и защищаемой цепи больше времени остывать и, соответственно, их срок службы не снижается.

    Одним из преимуществ является установка уровня тока и времени срабатывания автоматического выключателя при коротком замыкании, что осуществляет необходимую селективность защиты.

    Это необходимо для того, чтобы вводной автоматический выключатель отключился позже, чем ближайшие к аварии аппараты.

    Важно отметить, что, в отличие от теплового расцепителя, уставки по времени в микропроцессорном расцепителе не меняются при изменении температуры окружающей среды.

    Регулировка уставки тока селективной токовой отсечки выбирается кратно рабочему току IR: 1,5; 2; 3; 4; 5; 6; 7; 8; 9; 10.

    Регулировка уставки времени селективной токовой отсечки выбирается в секундах: 0 (без выдержки времени); 0,1; 0,15; 0,2; 0,25; 0,3; 0,35; 0,4.

    Важно

    Электромагнитная совместимость микропроцессорных расцепителей автоматических выключателей OptiMat D позволяет применять эти аппараты в общепромышленных электроустановках. В свою очередь, электромагнитные поля, создаваемые элементами микропроцессорного расцепителя не оказывают негативного влияния на окружающую технику.

    Рассмотрим выбор уставок на примере микропроцессорного расцепителя MR1-D250 автоматического выключателя OptiMat D.

    Имеется асинхронный двигатель АИР250S2 с параметрами Р=75 кВт; cosφ=0,9; Iп/Iном=7,5; для которого нужно выбрать уставки защищающего аппарата (автоматический выключатель защищает непосредственно линию с данным электродвигателем). Примем следующие условия: пуск электродвигателя легкий и время пуска равное 2 с.

    Выбираем для нашего двигателя уставку в 4 секунды с функцией тепловой памяти:

    В нашем случае номинальный ток электродвигателя составляет 126,6 А. Соответственно, выставляем переключатель регулировки номинального тока выключателя на значение 0,56, чтобы ближайшее значение получилось 140 А.

    Чтобы автоматический выключатель не срабатывал ложно от пусковых токов, кратность которых для выбранного двигателя составляет 7,5 примем уставку селективной токовой отсечки равную 8.

    Т. к. данный выключатель будет устанавливаться непосредственно для защиты электродвигателя для обеспечения селективности в действии выключателей принимаем мгновенную селективную токовую отсечку (без выдержки по времени).

    Следует также отметить, что при превышении током короткого замыкания значения в 3000 А выключатель будет срабатывать мгновенно, то есть без выдержки по времени.

    Таким образом, мы рассмотрели пример выбора уставок микропроцессорного расцепителя, обеспечивающие защиту асинхронного двигателя. Данный пример выбора уставок микропроцессорного расцепителя не является техническим руководством. В конечном виде панель настройки микропроцессорного расцепителя автоматического выключателя будет выглядеть так:

    Электромагнитная совместимость, соответствующая требованиям ГОСТ Р 50030.2-2010, и возможность внедрения в систему автоматизации делает автоматические выключатели Optimat D250 более надежными, удобными и выгодными решениями по многим показателям.

    Источник: https://KEAZ.ru/company/press-center/blog/2016/852-osobennosti-raboti-avtomaticheskih-vikluchateley-s-mikroprocessornimi-rascepitelyami

    Технические характеристики автоматических выключателей

    При практическом применении важно не только знать характеристики автоматических выключателей, а и понимать, что они означают. Благодаря такому подходу можно определиться с большинством технических вопросов. Давайте рассмотрим, что подразумевается под теми или иными параметрами, указанными на маркировке.

    Используемая аббревиатура.

    Маркировка устройств содержит всю необходимую информацию, описывающую основные характеристики автоматических выключателей (далее АВ). Что они обозначают, будет рассказано ниже.

    Время-токовая характеристика (ВТХ)

    При помощи такого графического отображения можно получить наглядное представление, при каких условиях будет активирован механизм отключения питания цепи (см. рис. 2). На графике, в качестве вертикальной шкалы отображается время, необходимое для активации АВ. Горизонтальная шкала показывает соотношение I/In.

    Рис. 2. Графическое отображение время токовых характеристик наиболее распространенных типов автоматов

    Допустимое превышение штатного тока, определяет тип время-токовых характеристик для расцепителей в приборах, производящих автоматическое выключение.

    В соответствии с действующими нормативом (ГОСТ P 50345-99), каждому виду присваивается определенное обозначение (из латинских литер). Допустимое превышение определяется коэффициентом k=I/In, для каждого вида предусмотрены установленные стандартом значения (см.

    рис.3):

    • «А» – максимум – троекратное превышение;
    • «В» – от 3 до 5;
    • «С» – в 5-10 раз больше штатного;
    • «D» – 10-20 кратное превышение;
    • «К» – от 8 до 14;
    • «Z» – в 2-4 больше штатного.

    Рисунок 3. Основные параметры активации для различных типов

    Заметим, что данный график полностью описывает условия активации соленоида и термоэлемента (см. рис.4).

    Отображение на графике зон работы соленоида и термоэлемента

    Учитывая все вышесказанное, можно резюмировать, что основная защитная характеристика у АВ обусловлена время-токовой зависимостью.

    Перечень типовых время-токовых характеристик.

    Определившись с маркировкой, перейдем к рассмотрению различных типов приборов, отвечающих определенному классу в зависимости от характеристик.

    Таблица время токовых характеристик автоматических выключателей

    Характеристика типа «A»

    Тепловая защита АВ этой категории активируется, когда отношение тока цепи к номинальному (I/In) превысит 1,3. При таких условиях отключение произойдет через 60 минут. По мере дальнейшего превышения номинального тока время отключения сокращается. Активация электромагнитной защиты происходит при двукратном превышении номинала, скорость срабатывания – 0,05 сек.

    Данный тип устанавливаются в цепях не подверженных кратковременным перегрузкам. В качестве примера можно привести схемы на полупроводниковых элементах, при выходе из строя которых, превышение тока незначительное. В быту такой тип не используется.

    Характеристика «B»

    Отличие данного вида от предыдущего заключается в токе срабатывания, он может превышать штатный от трех до пяти раз. При этом механизм соленоида гарантированно активируется при пятикратной нагрузке (время обесточивания – 0,015 сек.), термоэлемент – трехкратной (на отключение понадобиться не более 4-5 сек.).

    Такие виды устройств нашли применение в сетях, для которых не характерны высокие пусковые токи, например, цепи освещения.

    S201 производства компании ABB с время-токовой характеристикой B

    Характеристика «C»

    Это наиболее распространенный тип, его допустимая перегрузка выше, чем у двух предыдущих видов. При пятикратном превышении штатного режима срабатывает термоэлемент, это схема, отключающая электропитание в течение полутора секунд. Механизм соленоида активируется, когда перегрузка превысит норму в десять раз.

    Данные АВ рассчитаны на защиту электроцепи, в которой может возникнуть умеренный пусковой ток, что характерно для бытовой сети,  для которой характерна смешанная нагрузка. Покупая устройство для дома, рекомендуется остановить свой выбор на этом виде.

    Трехполюсный автомат Legrand

    Характеристика «D»

    Для АВ такого типа характерны высокие перегрузочные характеристики. А именно, десятикратное превышение нормы для термоэлемента и двадцатикратное для соленоида.

    Применяются такие приспособления в цепях с большими пусковыми токами. Например, для защиты пусковых устройств асинхронных электродвигателей. На рисунке 9 показано два прибора этой группы (a и b).

    Рисунок 9. а) ВА51-35; b) BA57-35; c) BA88-35

    Характеристика «K»

    У таких АВ активация механизма соленоида возможна при превышении токовой нагрузки в 8 раз, и гарантированно произойдет, когда будет двенадцати кратная перегрузка штатного режима (восемнадцати кратное для постоянного напряжения). Время отключения нагрузки не более 0,02 сек. Что касается термоэлемента, то его активация возможна при превышении 1,05 от штатного режима.

    Сфера применения – цепи с индуктивной нагрузкой.

    Характеристика «Z»

    Данный тип отличается небольшим допустимым превышением штатного тока, минимальная граница – двух кратная от штатной, максимальная – четырех кратная. Параметры срабатывания термоэлемента, такие же, как и у АВ с характеристикой К.

    Этот подвид применяется для подключения электронных приборов.

    Характеристика «MA»

    Отличительная особенность этой группы – не используется термоэлемент для отключения нагрузки. То есть прибор предохраняет только от КЗ, этого вполне достаточно, чтобы подключить электрический двигатель. На рисунке 9 показано такое приспособление (с).

    Ток штатной работы

    Этот параметр описывает максимально допустимое значение для штатного режима работы, при его превышении будет активировано срабатывание системы отключения нагрузки. На рисунке 1 показано, где отображается это значение (в качестве примера взята продукция компании IEK).

    Ток штатной работы обведен окружностью

    Тепловые параметры

    Под данным термином подразумевается условия срабатывания термоэлемента. Эти данные можно получить из соответствующего время-токового графика.

    Предельная отключающая способность (ПКС)

    Этот термин обозначает максимально допустимое значение нагрузки, при котором прибор сможет разомкнуть цепь без потери работоспособности. На рисунке 5 данная маркировка обозначена красным овалом.

    Рис. 5. Прибор компании Шнайдер Электрик

    Категории токоограничения

    Этот термин используется для описания способности АВ произвести отключение цепи до того, как ток КЗ в ней станет максимальным. Приспособления выпускаются с токоограничением трех категорий, в зависимости от времени отключения нагрузки:

    1. 10 мс. и больше;
    2. от 6 до 10 мс;
    3. 2,5-6 мс.

    Соответственно, чем выше категория, тем меньше электропроводка подвержена нагреву, а значит, снижается риск ее возгорания. На рисунке 6 указанная категория обведена красным овалом.

    Маркировка ВА47-29 содержит указание на класс токоограничения

    Заметим, что АВ, относящиеся к первой категории, могут не иметь соответствующей маркировки.

    Небольшой лайфхак о том, как выбрать необходимый выключатель для дома

    Предложим несколько общих рекомендаций:

    • Исходя из всего выше сказанного, нам следует остановить свой выбор на АВ с времятоковой характеристикой «С».
    • При выборе штатных параметров необходимо учитывать планируемую нагрузку. Для вычисления следует воспользоваться законом Ома: I=Р/U, где Р – мощность цепи, U – напряжение. Рассчитав силу тока (I), выбираем номинал АВ по таблице, представленной на рисунке 10.Рисунок 10. График для выбора АВ в зависимости от тока нагрузкиРасскажем, как пользоваться графиком. Допустим, произведя расчет силы тока нагрузки, мы получили результат – 42 А. Следует выбрать автомат, где это значение будет в зеленой зоне (рабочей области), это будет номинал – 50 А. При выборе также следует учитывать, на какую силу тока рассчитана проводка. Допускается подбирать автомат исходя из этого значения, при условии, что суммарная сила тока нагрузки будет меньше расчетного тока для проводки.
    • Если планируется установка УЗО или автомата дифференцированного тока, необходимо обеспечить заземление, в противном случае эти устройства могут работать некорректно;
    • Лучше отдать предпочтение изделиям известных брендов, они надежней и служат дольше китайской продукции.

    Источник: https://www.asutpp.ru/osnovnye-tehnicheskie-harakteristiki-avtomaticheskih-vyklyuchatelej.html

    Категории автоматических выключателей: A, B, C и D

    Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины.

    Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции.

    Совет

    Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена.

    АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

    Особенности работы автоматов защиты сети

    К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

    Токи, которые могут представлять опасность для сети, подразделяются на два вида:

    • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
    • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

    Устройство и принцип работы автоматического выключателя – на видео:

    Токи перегрузки

    Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии.

    В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму.

    Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

    За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

    Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

    Токи короткого замыкания

    Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание.

    За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником.

    Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

    Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

    На видео про селективность автоматических выключателей:

    Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике.

    Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже.

    Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

    Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

    Характеристики срабатывания защитных автоматических выключателей

    Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

    В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

    Автоматы типа МА

    Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

    Приборы класса А

    Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

    Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

    Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

    Защитные устройства класса B

    Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

    Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

    Автоматы категории C

    Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных.

    Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз.

    Обратите внимание

    Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

    Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

    Автоматические выключатели категории Д

    Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

    Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

    Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

    Защитные устройства категории K и Z

    Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления.

    Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек.

    Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

    Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

    Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

    Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

    Наглядно про категории автоматов на видео:

    Заключение

    В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.

    Источник: https://YaElectrik.ru/jelektroshhitok/kategorii-avtomaticheskih-vyklyuchatelej-a-b-c-i-d

Ссылка на основную публикацию
Adblock
detector