Как работает асинхронный двигатель – советы электрика

Как работает асинхронный электродвигатель – ElectrikTop.ru

Электродвигатели, которые работают от сети переменного тока, называют асинхронными. Такое определение они получили из-за особенностей взаимодействия магнитных полей статора и ротора, в результате которого их скорость вращения различается.

Устройство этих электрических машин проще, чем работающих на постоянном токе, поскольку их статор не имеет электрического соединения с внешними устройствами, осуществляемого посредством токосъемных колец – коллектора, за что они получили и свое второе название «бесколлекторные электродвигатели».

Пальма первенства в их изобретении принадлежит русскому инженеру М. О. Доливо-Добровольскому, создавшему первый действующий трехфазный двигатель в 1890 году. Стоит отметить, что его конструкция не претерпела коренных изменений на протяжении более ста лет.

Почему он вращается

Принцип работы электродвигателя переменного тока основан на феномене возникновения вращающегося магнитного поля, в двух или трех соленоидах, определенным образом ориентированных в пространстве.

Направление вектора электромагнитного поля определяется правилом левой руки, согласно которому четыре пальца указывают направление движения тока, а пятый (большой) – движения самого проводника под действием сил электромагнитной индукции, входящих в открытую ладонь.

Обратите внимание

Если соленоид один, то при пропускании через него переменного тока стальной сердечник совершает колебательные движения. Чтобы он смог совершить оборот на 360°, нужны минимум две катушки, расположенные перпендикулярно друг другу, из-за чего суммарный вектор силы электромагнитной индукции будет описывать окружность.

Лучший, более стабильный, результат получается при использовании трех соленоидов, расположенных под углом друг к другу в 120°. Сдвиг фазы тока в катушках соленоида может быть достигнут не только позиционированием, но и включением в цепь одного из них активной нагрузки. Например, конденсатора.

Почему он асинхронный

Магнитное поле статора наводит в сердечнике ротора электрический ток, в результате чего он обзаводится собственным. Его полюса стремятся притянуться к тем, которые его породили, но это движение никогда не завершится по двум причинам:

  1. При совпадении полюсов пропадает разница электрических потенциалов между деталями машины, из-за чего ток в роторе прекращает течь, магнитное поле исчезает, а вал затормаживается. Эта своеобразная пульсация частоты вращения более выражена в двигателях, работающих от одной или двух фаз. Поэтому три катушки предпочтительнее.
  2. Статор больше ротора на величину магнитного зазора, поэтому создаваемое им магнитное поле имеет большую угловую скорость относительно центра вала.

Конструкция асинхронного электродвигателя

Оптимальным конструкторским решением расположения соленоидов является их размещение на внутренней поверхности цилиндра (трубы), внутри которого находится металлический вращающийся сердечник. Первый, поскольку он неподвижный, назвали статором электрической машины, а второй – ротором.

Постоянство расстояния между этими частями, называемого магнитным зазором, обеспечивается двумя крышками с подшипниками качения в центре. У асинхронных двигателей он не превышает трех миллиметров, поскольку при больших значениях сила электромагнитного взаимодействия между ротором и статором ослабевает настолько, что вал останавливается.

Конструкция ротора

Утверждение, что все асинхронные – это бесколлекторные электродвигатели, является допущением, в котором есть исключение. В действительности конструкция подвижной части электрической машины переменного тока бывает двух типов:

  1. Короткозамкнутый ротор.
  2. Ротор с фазными обмотками.

Короткозамкнутым называют ротор, устройство которого похоже на беличье колесо: он состоит из двух медных колец и нескольких толстых проводников, их соединяющих.

Пространство между ними – сердечник – набирают из листов легированной стали, что уменьшает паразитные вихревые потоки.

Во время пуска двигателя вращающееся поле статора провоцирует возникновение в нем электрического тока, а поскольку все проводники детали соединены друг с другом, возникает короткое замыкание.

Поэтому пусковой ток асинхронных двигателей в два — три раза номинального рабочего. После того как ротор тронется с места, ток расходуется на создание магнитного поля. Из-за простоты устройства мирятся и с падением напряжения, и с моментальным набором скорости, что делает нагрузочную характеристику двигателя жесткой.

Фазные обмотки на роторе устраивают для ликвидации всплеска пускового тока, что необходимо для защиты сети от перегрузки. Их три, они соединяются звездой, а свободные концы выводят на коллектор, состоящий из трех медных колец, разделенных диэлектриком и посаженных на хвостовик вала двигателя. Перед включением ротор шунтируют большим сопротивлением (реостатом), который гасит ток.

Передвигая ползунок реостата, допускают плавное возникновение тока в роторе и раскрутку вала двигателя. Асинхронность таких машин выше, поэтому у них ниже КПД. Зато появляется возможность плавной регулировки частоты вращения.

Важно

Асинхронный двигатель с фазным ротором встречается очень редко из-за сложной конструкции, которая абсолютно идентична той, что имеет генератор переменного тока.

Единственное его отличие – на коллекторные кольца подается постоянное напряжение, поэтому какую-то пару щеток можно замкнуть между собой.

Конструкция статора

Она двухслойная. Наружную «рубашку», которая обеспечивает механическую прочность конструкции, ранее отливали из чугуна. Сейчас все чаще используют легкие сплавы. Для эффективного отвода тепла на ней делают ребра жесткости.

Внутри находится слой, набранный из листов легированной стали, которые изолированы друг от друга диэлектрическим лаком. На его внутренней поверхности устроены пазы.

В них укладываются обмотки – медный проводник из нескольких витков, которые изолированы друг от друга во избежание пробоя, приводящего к снижению силы магнитного поля и аварии машины. Зазор между статором и ротором очень мал, поэтому витки скрыты в толще металла, чтобы не мешать вращению.

Однофазные двигатели

Однофазный асинхронный двигатель отличается лишь количеством статорных обмоток, которых две. Они всегда включены параллельно и расположены перпендикулярно друг другу. Для обеспечения начального фазного сдвига в цепь одной из них включена активная нагрузка.

Обычно бумажный конденсатор большой емкости. После набора оборотов одна из обмоток отключается. Так делается в двигателях мощностью свыше пятидесяти ватт. У маломощных машин вторая обмотка выполняется короткозамкнутой. Фазу сдвигает индуцированный противоток.

Управление скоростью вращения

Явным недостатком асинхронных двигателей является сложность управления ими. Для изменения скорости вращения используются два метода:

  1. Частотное преобразование питающего напряжения. Практически никогда не применяется, поскольку по законам электротехники любая индуктивность (обмотка, соленоид, трансформатор) спокойно переносит только повышение частоты. При ее понижении она начинает работать в режиме нагревателя.
  1. Варианты с числом, способом укладки и размещением в пазах обмоток статора. Метод основан на том, что три фазных обмотки – это один условный двухполюсной вращающийся магнит, совершающий полный оборот за период, равный частоте сети. То есть, при самой простой конструкции статорной обмотки частота вращения будет равна 3 тыс. оборотов в минуту.

Если на статоре разместить шесть обмоток, сгруппировать их по три и подключить последовательно, то получим не два, а четыре полюса. Из-за этого частота вращения снизится в два раза – до 1500 оборотов в минуту.

При устройстве девяти обмоток, подключенных по тому же принципу, скорость снизится еще в два раза, до 750 оборотов в минуту, ведь полюсов станет шесть. Дальнейшее снижение скорости не производится, поскольку связано с большими техническими трудностями.

Нередко технология производства требует, чтобы привод мог вращаться с двумя или тремя скоростями. Эта проблема решается двумя путями:

  1. Подключением дополнительных независимых обмоток. Вместе с изменением скорости меняется и крутящий момент электродвигателя, поскольку индуктивность всякий раз разная.
  1. Устройством дополнительных выводов из одной обмотки. Так называемый метод Даландера. Имеет преимущество в том, что крутящий момент сохраняется неизменным.

Двухскоростной асинхронный электродвигатель имеет статорную обмотку, каждая из катушек поделена которой на две дополнительными выводами. Для наглядности обозначим 2U, 2V и 2W.

В режиме тихого хода (1500 оборотов) обмотки соединены треугольником, питающее напряжение подается на выводы 1U, 1V и 1W, а 2U, 2V и 2W остаются свободными. Если требуется набрать 3 тыс.

оборотов, то производится коммутация:

  • питание подается на 2U, 2V и 2W;
  • выводы 1U, 1V и 1W соединяются между собой.

В результате схема подключения обмоток меняется с «треугольника», в каждой стороне которого две последовательных катушки, на «звезду», в каждом луче которой две параллельных катушки. Число полюсов сократилось вдвое, а суммарная индуктивность осталась той же.

Существуют и трехскоростные электродвигатели, обмотки которых имеют по три вывода, поскольку должно получиться девять обмоток.

Обычно для управления многоскоростными асинхронными двигателями устраивают силовую релейную схему. Это позволяет изменять скорость вращения за несколько секунд.

Значимость изобретения в конце XIX века трехфазного асинхронного двигателя вполне можно сравнить с появлением компьютера и даже с полетом в космос. До сих пор человечество не сумело создать ничего более эффективного, ведь КПД этого устройства близко к ста процентам.

Источник: https://electriktop.ru/bytovaya-tehnika/kak-rabotaet-asinhronnyj-dvigatel.html

Может ли работать асинхронный двигатель как генератор — как его использовать в домашних условиях?

В электротехнике существует так называемый принцип обратимости: любое устройство, которое преобразует электрическую энергию в механическую, может делать и обратную работу. На нем основан принцип действия электрических генераторов, вращение роторов которых вызывает появление электрического тока в обмотках статора.

Теоретически можно переделать и использовать любой асинхронный двигатель в качестве генератора, но для этого надо, во-первых, понять физический принцип, а во-вторых, создать условия, обеспечивающие это превращение.

Вращающееся магнитное поле – основа схемы генератора из асинхронного двигателя

В электрической машине, изначально создающейся как генератор, существуют две активные обмотки: возбуждения, размещенная на якоре, и статорная, в которой и возникает электрический ток. Принцип её работы основан на эффекте электромагнитной индукции: вращающееся магнитное поле порождает в обмотке, которая находится под его воздействием, электрический ток.

Магнитное поле возникает в обмотке якоря от напряжения, обычно подаваемого с аккумулятора, ну а его вращение обеспечивает любое физическое устройство, хотя бы и ваша личная мускульная сила.

Совет

Конструкция электродвигателя с короткозамкнутым ротором (это 90 процентов всех исполнительных электрических машин) не предусматривает возможности подачи питающего напряжения на обмотку якоря.

Поэтому, сколько бы вы ни вращали вал двигателя, на его питающих клеммах электрического тока не возникнет.

Тем, кто хочет заняться переделкой асинхронного двигателя в генератор, надо создавать вращающееся магнитное поле самостоятельно.

Создаем предусловия для переделки

Двигатели, работающие от переменного тока, называют асинхронными. Все потому, что вращающееся магнитное поле статора чуть опережает скорость вращения ротора, оно как бы тянет его за собой.

Используя тот же принцип обратимости, приходим к выводу, что для начала генерации электрического тока вращающееся магнитное поле статора должно отставать от ротора или даже быть противоположным по направлению. Создать вращающееся магнитное поле, которое отстает от вращения ротора или противоположно ему, можно двумя способами.

Затормозить его реактивной нагрузкой. Для этого в цепь питания электродвигателя, работающего в обычном режиме (не генерации), надо включить, например, мощную конденсаторную батарею. Она способна накапливать реактивную составляющую электрического тока – магнитную энергию. Этим свойством в последнее время широко пользуются те, кто хочет сэкономить киловатт-часы.

Если быть точным, то фактической экономии электроэнергии не происходит, просто потребитель немного обманывает электросчетчик на законной основе.

Накопленный конденсаторной батареей заряд находится в противофазе с тем, что создается питающим напряжением и «подтормаживает» его. В результате электродвигатель начинает генерировать ток и отдавать его обратно в сеть.

На практике этот эффект применяется в транспорте на электрической тяге.

Как только электровоз, трамвай или троллейбус идут под уклон, к цепи питания тягового электродвигателя подключается конденсаторная батарея и происходит отдача электрической энергии в сеть (не верьте тем, кто утверждает, что электротранспорт дорог, он почти на 25 процентов обеспечивает энергией сам себя).

Такой способ получения электрической энергии не есть чистая генерация. Чтобы перевести работу асинхронного двигателя в режим генератора, надо использовать метод самовозбуждения.

Самовозбуждение асинхронного двигателя и переход его в режим генерации может возникнуть из-за наличия в якоре (роторе) остаточного магнитного поля. Оно очень мало, но способно породить ЭДС, заряжающее конденсатор. После возникновения эффекта самовозбуждения конденсаторная батарея подпитывается от произведенного электрического тока и процесс генерации становится непрерывным.

Читайте также:  Узо в электрике - советы электрика

Секреты изготовления генератора из асинхронного двигателя

Чтобы превратить электромотор в генератор надо использовать неполярные конденсаторные батареи. Электролитические конденсаторы для этого не годятся.

В трехфазных двигателях конденсаторы включаются звездой или треугольником.

Соединение «звездой» позволяет начать генерацию на меньших оборотах ротора, но величина напряжения на выходе будет несколько ниже, чем при соединении «треугольником».

Также можно сделать генератор из однофазного асинхронного двигателя. Но для этого годятся лишь те, которые имеют короткозамкнутый ротор, а для запуска используют фазосдвигающий конденсатор. Коллекторные однофазные двигатели для переделки в генератор не годятся.

Рассчитать в бытовых условиях величину потребной емкости конденсаторной батареи не представляется возможным.

Поэтому домашний мастер должен исходить из простого соображения: общий вес конденсаторной батареи должен быть равен или немного превышать вес самого электродвигателя.

На практике это приводит к тому, что создать достаточно мощный асинхронный генератор почти невозможно, поскольку чем меньше номинальные обороты двигателя, тем он больше весит.

Оцениваем уровень эффективности — выгодно ли это?

Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.

Во многих теоретических изданиях главным преимуществом асинхронных генераторов представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора.

Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.

Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать.

Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».

Обратите внимание

У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.

Все остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.

Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.

Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки.

Однако при этом полностью теряется преимущество «простоты схемы».

Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.

Функционирование асинхронного двигателя как генератора на видео

Источник: http://elektrik24.net/elektrooborudovanie/elektrodvigateli/triohfaznye/kak-generator.html

Асинхронный двигатель: конструктивные элементы, принцип работы и технические особенности. Инструкция для мастеров!

Электродвигателем асинхронного типа называется электрическая машина, которая преобразует электроэнергию в энергию механическую. Работает данный агрегат от переменного тока. От синхронного двигателя его отличает тот момент, что статор в нём вращается с большей, чем ротор, частотой.

Краткая историческая справка

Первый двигатель асинхронного типа был изобретён ещё во время Российской Империи, а именно 8 марта 1889 г. Автор изобретения – великий русский мастер инженерной мысли М. О. Доливо-Добровольский.

Сегодня область использования подобных электродвигателей довольно широка. Они считаются наиболее распространённым видом двигателей, поскольку совершили технический переворот в промышленной сфере.

Можно дать следующее описание асинхронных электродвигателей: это единственная разновидность двигателей, в которой полюсы создаются благодаря такому явлению, как индукция. Поэтому их часто называют индукционными.

Преимущества и недостатки асинхронных электродвигателей

Современные преобразователи электроэнергии в энергию механическую обладают следующими преимуществами:

  • Доступная стоимость. Цена асинхронных двигателей намного ниже, чем синхронных.
  • Распространённость. Асинхронную электрическую машину можно приобрести на любом специализированном рынке. Полно предложений и в Интернете.
  • Надёжность. Двигатель обладает способностью выдерживать небольшой перепад напряжения.
  • Простота эксплуатации. Устройство асинхронного типа легко запускается, поскольку, чтобы его включить применяется простейшая схема.
  • Довольно высокий уровень КПД. Он значительно выше, чем у синхронных электродвигателей.

К недостаткам относятся:

  • Довольно высокое значение пускового тока в условиях номинальной скорости. Первый пуск может привести к перегрузке электросети.
  • Почти полное отсутствие защиты. Защищённое исполнение обмоток не спасает двигатель от поломок. Нередко резкие перепады напряжения приводят к сгоранию обмотки.
  • Коэффициент скольжения намного ниже, чем у синхронных моторов.

Особенности устройства

Конструкция асинхронного двигателя достаточно проста. Ее базовые элементы — это статор и ротор.

Статор имеет вид цилиндра, собранного из стальных листов. Обмотки находятся в пазах сердечника. Обычно для них используют обыкновенный силовой кабель. Оси обмоток располагаются под углом 120 градусов по отношению друг к другу. Соединение их концов может быть в треугольной форме или в форме звезды – это зависит от напряжения.

Далее поговорим о роторе. Выделяют две разновидности – короткозамкнутый ротор и фазный. Как показывают фото асинхронных двигателей, первая разновидность ротора имеет вид наборного стального сердечника. Его пазы заливают алюминием. Полученные стержни накоротко замыкают особыми торцевыми кольцами.

Фазный ротор характеризуется трёхфазной обмоткой, схожей со статорной. Чаще всего концы обмоток образуют форму звезды, а свободные подводят к специальным контактным кольцам.

Важно

Подобная конструкция даёт возможность при необходимости осуществить ввод добавочного резистора, который позволяет менять активное сопротивление. Это необходимо, если нужно уменьшить значение пускового тока.

В основе принципа работы электродвигателя асинхронного типа лежит применение вращающегося магнитного поля. Оно образуется в статоре, взаимодействует с токами, наводящимися им же в роторе. Важный нюанс: возникновение вращающегося момента возможно только при разных частотах, с которыми вращаются магнитные поля.

Виды асинхронных электродвигателей

В зависимости от месторасположения ротора принято выделять следующие типы асинхронных двигателей:

  • Горизонтальный.
  • Вертикальный.

Кроме того, устройства могут быть в открытом и закрытом исполнении.

Рекомендации по техническому обслуживанию

Обслуживание асинхронных электродвигателей включает в себя:

  • Тщательный осмотр внешнего вида и проведение оценки механики.
  • Визуальная оценка электрики.
  • Производство измерений и испытаний.

Задачей обслуживания является своевременное обнаружение неисправных элементов и дефектов. Его основная цель – профилактика. Мелкие неисправности могут быть исправлены на месте. Исправление серьёзных потребует обращения к специалистам.

Советы по выбору

Как выбрать асинхронный двигатель? Здесь нужно учитывать условия, в которых он будет эксплуатироваться, и характеристики питающих цепей.

Вот несколько рекомендаций:

Если вы не нуждаетесь в реверсировании, то оптимальным вариантом будет однофазный электродвигатель асинхронного типа.

Для трёхфазной сети лучше приобрести и мотор трёхфазный. Это наиболее рационально.

Фото асинхронных двигателей

Источник: http://electrikmaster.ru/asinxronnyj-dvigatel/

Как работает трехфазный асинхронный двигатель?

В асинхронном двигателе роль клочка сена играет магнитное поле, которое «бежит» по кругу, вырабатываемое совершенно неподвижными катушками статора. А роль ишачка играет ротор, который гонится за этим полем.

Ну а как только ишачок побежал, главная задача — научиться им управлять. И задача эта не из легких.

Бегущее магнитное поле

Статор асинхронных двигателей, подключаемых к трехфазной сети, состоит из трех электромагнитов. На них подается напряжение разных фаз сети.

А так как разные фазы работают — нарастают и уменьшаются — со сдвигом во времени друг от друга, аналогично будет нарастать и уменьшаться магнитное поле в катушках.

Сначала поле возникнет и будет расти в катушке 1 фазы, через одну треть периода точно так же возникнет и будет возрастать поле во второй фазе, а поле в первой при этом постепенно и плавно, по синусоиде, сначала перестанет нарастать, а потом начнет уменьшаться.

Все повторится и для катушки третьей фазы — поле появится, будет возрастать, тогда как поле во второй сначала остановит свой рост, потом пойдет на спад. А в это время поле в первой фазе уже дойдет до нуля и будет возрастать в отрицательную сторону.

Структура трехфазного двигателя

Если в статоре сделать только три обмотки, по числу фаз в питающем напряжении, то магнитное поле будет вращаться с той же частотой, что и напряжение, то есть 50 раз за одну секунду. Но на практике их делают гораздо больше.

Поле в статоре

Тогда бегающее по кругу поле будет иметь частоту вращения меньше, но вращение при этом станет более плавным.   

Поведение ротора в бегущем магнитном поле

 «Обмотки» ротора представляют собой проводники, расположенные «почти» параллельно валу ротора и набранные по кругу в виде «беличьей клетки». Это не обмотки, так как там ничего не намотано, а проводники, воткнутые в два металлических круга. То есть через эти металлические круги, накоротко замкнутые.

Ротор асинхронных двигателей

«Беличья клетка» является замкнутой накоротко обмоткой, которая заполнена пакетом-сердечником, набранным из поперечных тонких пластин из электротехнической стали

Когда на ротор воздействует внешнее изменяющееся магнитное поле статора, в роторе наводятся кольцевые токи, которые, в свою очередь, создают магнитное поле. Это поле, усиленное сердечником, направлено так, что ротор начинает вращаться вслед за бегущим магнитным полем статора.

Вращение направлено в направлении «догнать» убегающую волну. Ротор разгоняется, но, по мере того, как он будет догонять волну статора, наводки в нем будут все меньше и меньше.

Совет

Он начнет «приотставать» (от силы трения или от силы сопротивления механической нагрузки на вал ротора), но усиливающаяся от этого в нем индукция снова толкает ротор к вращению.

Такой принцип порождает некоторое рассогласование частот: частота напряжения, которая является причиной движения ротора, не изменяется во времени — стабильно 50 герц, а частота вращения то догоняет, то отстает. Такие несоответствия могут быть незаметны там, где частота не очень важна, но из-за них двигатель и называется асинхронным.

Все мы это прекрасно видели и слышали, когда включали вентилятор. Он сначала набирает скорость, хорошо «берется за дело». Только потом как-то слегка «проваливается» — крутится по инерции, но опять «спохватывается» и «поддает газу».

Идеальный случай вращения в таком двигателе — это когда совсем нет трения и сопротивления, это холостой ход такого мотора. Тогда скорость определяется формулой вращения самого бегущего поля от статора

Формула

Здесь  nr – скорость вращения в оборотах в минуту,
fu – частота питающего напряжения,
p – число катушек статора в каждой фазе.

   Например, если, как нарисовано на картинке с красной стрелочкой вращения поля статора, в статоре три катушки, то есть по одной на каждую фазу, то получим

  nr = 60 50/1 = 3000 (об./мин) или 50 об./с. То есть скорость вращения равна частоте напряжения в сети. Увеличением количества обмоток в статоре можно добиться снижения скорости вращения

Во многих случаях точная частота вращения двигателя действительно не так важна, поэтому электродвигатели асинхронные трехфазные находят широкое применение.

Трехфазные электродвигатели имеют и другой недостаток: циклические токи ротора вызывают его непрерывный разогрев, поэтому и делают кольцевые металлические пластины с ребрами для охлаждения воздухом при вращении.

Схемы и способы подключения

Так как есть несколько обмоток внутри двигателя — обмотки статора, — и сеть переменного тока бывает однофазной, а бывает трехфазной, то и схема включения всего этого хозяйства допускает вариации.

Читайте также:  Рубильник обозначение на схеме - советы электрика

Обмоток на статоре обычно три. Ну а если их больше, то все равно обмотки каждой фазы внутри уже соединены последовательно. То есть в качестве выходных клемм максимум может быть 6. И их подсоединить к сети можно по-разному.

Обратите внимание

Систем обозначений клемм две. На старых обозначались буквами С и цифрами 1,2,3 — начала обмоток; цифрами 4,5,6 — концы обмоток.

В новых обозначениях для разных обмоток употребляются буквы U, V, W, а для начал и концов цифры 1 и 2 соответственно.

Клеммы обмоток могут быть на двигателе выведены наружу, и можно самостоятельно подключить трехфазный двигатель к сети переменного тока

Как подключить двигатель по схеме «звезда»

При соединении обмоток по типу «звезда» концы обмоток нужно объединить, а на клеммы начала обмоток подать напряжения фаз из сети.

Подключение трехфазного электродвигателя по схеме «Звезда»

Здесь использованы обозначения клемм электродвигателей трехфазных, применяемые на схемах, старые и новые

При подключении типа «звезда» нулевой провод из сети желательно подавать на общую клемму двигателя. Это защитит его от порчи в случае перекоса фаз в сети.

Как подключить электромотор по схеме «треугольник»

Подключить трехфазный двигатель обмотками в «треугольник» в сеть переменного тока не сложнее. Надо начало одной обмотки соединять с концом следующей. И еще все начала подключить к фазным проводам переменного тока.

Подключение асинхронного двигателя по схеме «треугольник»Клеммник для подключения асинхронного электродвигателя по типу “Звезда”

Два эти подключения — «звезда» и «треугольник» — в сети дают разные результаты по токам и мощностям.

В «звезде» на каждую обмотку подано фазное напряжение 220 В, а две обмотки вместе нагружены линейным напряжением в 380 В. Протекающие в обмотках токи при этом меньше, чем при конфигурации «треугольник». Отсюда и работа отличается: «звезда» дает мягкий запуск, но при работе развивает меньшую мощность, чем «треугольник».

Зато «треугольник» при запуске дает большие стартовые токи, превышающие номинал раз в 7–8.

Чтобы сочетать преимущества обеих конфигураций, коммутацию делает особая схема. Она при запуске двигателя коммутирована как «звезда», а при достижении определенной мощности переключается в вариант «треугольник».

В этом случае (и в других случаях с постоянными подключениями обмоток), на входном клеммнике оставляют только 3 или 4 клеммы, и вариантов по переключению обмоток по своему усмотрению не остается.

В этом случае просто подключаются фазы в нужном порядке.

Подключение трехфазного двигателя в однофазную сеть

Трехфазное напряжение нашей сети можно представить как одну и ту же фазу, только повторенную еще два раза со сдвигом, сначала на 120°, потом плюс еще на столько же, то есть в результате на 240°. И такое напряжение вполне схематически посильно «добыть» из одной выделенной фазы.

Однако когда мы запускаем «бегущее поле» статора, совсем не обязательно делать его именно с таким сдвигом между поданными на обмотки фазами. Потому что увеличение количества полюсов в обмотках проявляется как уменьшение скорости вращения, но механизм работает.

Поэтому разработаны простые схемы получения сдвинутых фаз из однофазной линии не под таким углом, а под 90°. Это можно сделать простой схемой, дающей подключение трехфазного двигателя в однофазную сеть с применением одного конденсатора. Результатом является снижение мощности двигателя.

Важно

При маркировке двигателей, которые можно использовать в однофазной сети 220 В и в сети 380 В трехфазной, так и пишется — двигатель 220/380, а который предназначен для работы только в трехфазной — двигатель 380.

Подключение трехфазного двигателя в однофазную сеть 220 В типа “Треугольник” и “Звезда”

Схема подключения «звезда» в этом случае дает потерю мощности, поэтому для более полного использования двигателя при подключении к однофазному напряжению чаще применяют «треугольник».       

Источник: https://domelectrik.ru/oborudovanie/dvigatel/trekhfaznaya-asinhronnaya-mashina

Принцип работы асинхронного электродвигателя

Простым по собственному устройству и самым всераспространенным является асинхронный движок придуманный  М. О. Доливо-Добровольским. Механизм работы которого основан на содействии крутящего магнитного поля на приспособленную для вращения короткозамкнутую обмотку.

Для усиления магнитного поля и придания ему подабающей конфигурации, обмотки асинхронного двигателя размещены на 2-ух сердечниках, которые собираются из листов электротехнической стали шириной 0.5 мм.

Листы друг от друга изолированы слоем лака, для уменьшение утрат на вихревые токи.

У недвижной части машины – статора, сердечник имеет форму полного цилиндра. В пазах с внутренней стороны этого сердечника уложена трехфазная обмотка. Эта обмотка врубается под напряжение трехфазной сети и возникающие в ней токи возбуждают крутящееся магнитное поле машины.

Механизм работы асинхронного электродвигателя основан на содействии вращающегося магнитного поля

У подвижной части – ротора сердечник имеет форму цилиндра. Он укреплен на валу машины. В пазах на поверхности сердечника располагается обмотка ротора. Почти всегда короткозамкнутая.

Если ее на уровне мыслей снять с сердечника, то она будет иметь вид цилиндрической клеточки из медных либо дюралевых стержней, замкнутых на торцах, 2-мя кольцами из такого же материала. Такую обмотку именуют «беличьим колесом». Стержни обмотки вставляются в пазы ротора без изоляции.

Нередко короткозамкнутая обмотка ротора изготовляется методом заливки расплавленным алюминием пазов сердечника. При этом отливаются и замыкающие кольца.

Обмотка статора электродвигателя производится изолированным проводом и укладывается в пазы статора. Любая из катушек распределяется по нескольким пазам. Если обмотка состоит из 3-х катушек, то трехфазная система токов, ее обтекающих, возбуждает вышеперечисленное двухполюсное вращение.

За один период переменного тока такое поле делает один оборот. Как следует при стандартной промышленной частоте 50 гц  т. е. 50 периодов за секунду. Двухполюсное поле делает 50 х 60 =3000 об/мин. Скорость вращения ротора обычно лишь  на несколько процентов меньше скорости вращения поля.

роторо асинхронного мотора беличья клеточка (колесо)

Совет

Чтоб получить движок с наименьшей скоростью поля, необходимо средством многополюсной обмотки прирастить число полюсов крутящего магнитного поля. Каждым трем катушкам статорной обмотки, соответствует одна пара полюсов крутящего поля. Как следует, если трехфазная обмотка статора состоит из К катушек.

то число пар полюсов крутящего поля, возбуждаемого этой обмоткой будет: Р=К:З Направление вращения ротора асинхронного мотора определяется направлением вращения его магнитного поля. А направление вращения поля обуславливается  последовательностью фаз А В С трехфазной сети.

Для изменения  направления вращения мотора довольно поменять соединение обмотки статора с сетью, чтоб зажим статора, соединенный сначало с фазой А сети, был бы присоединен к фазе В сети: соответственно зажим статора, соединенный с фазой В  сети, должен быть соединен с фазой А сети.

Соединение третьего зажима статора с сетью остается без конфигураций.

Пока ротор неподвижен. Условия в асинхронном движке подобны условиям в трансформаторе: первичной обмотке трансформатора соответствует обмотка статора. А вторичной обмотка ротора. Напряжение на зажимах каждой фазной обмотки статора уравновешивается приемущественно э. д. с.

индуктируемой в этой обмотке вращающимся магнитным полем. Ток в обмотке ротора индуктируется вращающимся магнитным полем. Согласно принципу Ленца этот индуктированный ток,  стремится ослабить магнитное поле, его индуктирующее. Но ослабление магнитного поля уменьшает э. д. с.

индуктируемую этим полем в обмотке статора: как следует, нарушается электронное равновесие на зажимах статора. Так появляется неустойчивый излишек напряжения. Это вызывает повышение силы тока в обмотке статора.

Ток статора увеличивает магнитное поле приблизительно до его прежней величины и электронное равновесие на зажимах статора восстанавливается.

Асинхронный движок в разобраном виде

Соотношение токов статора  и ротора в асинхронном движке подобны соотношениям первичного и вторичного токов в трансформаторе. Ток статора является не намагничивающим. А ток ротора – размагничивающим. Всякое изменение тока ротора вызывает  пропорциональное изменение тока статора.

Обратите внимание

При пуске мотора в ход, крутящееся магнитное поле пересекает обмотку ротора с большой скоростью (угловой скоростью W:P) и индуктирует в ней значительную э. д. с. Эта э. д. с.

делает в короткозамкнутом роторе большой пусковой ток. Соответственно и в обмотке статора  появляется тоже значимый пусковой ток. Он больше рабочего тока мотора приблизительно раз в семь.

Пусковой толчок тока характерен для асинхронного мотора с короткозамкнутым ротором.

По мере того как скорость ротора растет. миниатюризируется индуктируемая в нем э. д. с. а совместно с ней уменьшаются токи ротора и статора. В конце запуска ненагруженного  мотора, сила тока ротора должна быть таковой, чтоб крутящий момент, развиваемый движком, покрывал все его механические утраты – от трений в подшипниках, о воздух и т. д.

Если нагрузить уже  крутящийся асинхронный движок, то механический тормозящий момент на валу мотора поначалу окажется подольше крутящего момента и ротор уменьшит скорость n2 / Соответственно вырастет разность скоростей n1 – n2 поля и ротора, т. е. возрастет скольжение.

Асинхронный движок с короткозамкнутым ротором

Крутящееся поле будет пересекать ротор с относительно большой скоростью и индуктировать в роторе огромную э. д. с. Возрастание  э. д. с. Вызовет повышение силы тока в роторе. Пропорционально силе тока вырастет крутящий момент и уравновесит тормозящий момент нагрузки на валу мотора.

Сразу, повышение силы тока ротора вызовет соответственное увеличение силы тока статора, в итоге чего вырастет и потребление мощности движком из сети, Таким макаром, с повышением нагрузки на валу мотора растет скольжение, силы тока статора и потребление мощности движком из сети.

Источник: http://elektrica.info/printsip-raboty-asinhronnogo-e-lektrodvigatelya/

Асинхронный двигатель – принцип работы устройства, схема частотного преобразователя

Современное промышленное производство, как постоянно динамично развивающаяся система, требует применения для решения различных задач новых и инновационных технических решений. Вместе с тем, многие производства и сейчас используют в качестве двигателей станков, машин и различных механизмов старых надежных асинхронных двигателей.

Среди применяемых в производстве электронных систем и электрических машин, особое место занимает асинхронный двигатель – электрическая с электронным блоком управления машина, использующая переменный ток для преобразования электрической энергии в механическую.

Более глубокое раскрытие этого понятия основано на принципе использования магнитного поля для создания вращательного движения – статор создает магнитное поле, несколько большее по частоте, чем частота магнитного поля вращающегося ротора.

Важно

Магнитное поле заставляет вращаться ротор, при этом, его частота вращения несколько меньше, чем изменение магнитного поля статора, он как бы пытается догнать образовываемое статором поле.

Двигатели такого принципа являются наиболее распространенными видами электрических машин – это наиболее простой и экономичный тип преобразования электрической энергии переменного тока во вращательную механическую энергию.

Как и у большинства технически сложных механизмов, у таких моторов есть масса положительных сторон, главная из которых является отсутствие электрического контакта между подвижными и неподвижными частями машины.

Это достоинство асинхронников и является основным при выборе моделей двигателей в конструкторских разработках – отсутствие коллектора и щеток, контакта между статором и ротором значительно повышают надежность и удешевляют производство таких моторов.

Однако, следует заметить, что это правило справедливо только к одному из видов (хотя и наиболее распространенному виду) – двигателям с короткозамкнутым ротором.

Описание схемы

Работу асинхронного электродвигателя, предназначенного для обычной электросети переменного электрического тока можно описать следующей схемой:

  1. На обмотки статора двигателя подается переменный электрический ток от каждой фазы (в случае, если двигатель трехфазный, если ток однофазный, то включение остальных обмоток происходит посредством включения в схему пусковых конденсаторов, играющих роль имитации трехфазной сети).
  2. В результате подачи напряжения, в каждой из имеющихся обмоток создается электрическое поле с частотой напряжения, и поскольку они имеют смещение на 120 градусов относительно друг друга, то происходит смещение подачи как во времени (даже ничтожно малого), так и в пространстве (тоже достаточно небольшого).
  3. Получившийся в результате вращающийся магнитный поток статора своей силой создает в роторе, вернее в его проводниках, электродвижущую силу.
  4. Созданный в статоре магнитный поток, взаимодействуя с магнитным полем ротора, создает пусковой момент – магнитное поле которого стремится повернуться в направлении магнитного поля статора.
  5. Магнитное поле постепенно нарастая и превышая так называемый тормозной момент, проворачивает ротор.
Читайте также:  Для чего нужен предохранитель - советы электрика

Таким образом, схемой работы асинхронного агрегата, является взаимодействие магнитного поля статора и токов, которые образуются этим самым магнитным полем в роторе двигателя.

Устройство

Устройство двигателя

Наиболее наглядно представить конструкцию агрегата можно на примере асинхронного двигателя, имеющего короткозамкнутый ротор, второй вид электромоторов имеет несколько иную конструкцию, это вызвано тем, что они используют промышленную сеть в 380 Вольт.

Основными составными частями такой электрической машины являются статор и ротор, которые не соприкасаются между собой и имеют воздушный зазор. Такая конструкция основных частей связана с тем, что в состав обеих основных частей электромотора входят так называемые активные части – состоящие из металлического проводника обмотка возбуждения.

Для каждой части имеются своя соответственно статорная и роторная обмотки и стальной сердечник – магнитопровод. Это основные части электродвигателя, принципиально необходимые для работы машины, все остальные части – корпус, подшипники качения, вал, вентилятор – это конструктивно необходимые, но абсолютно не влияющие на принцип работы прибора.

Они во многом играют важную роль, например, подшипники качения, обеспечивают возможность плавности хода, корпус защищает от механического воздействия на основные рабочие части, вентилятор обеспечивает обдув двигателя и отвод тепла, выделяемого при работе, но на принцип преобразования электрической энергии в механическую не влияют.

Итак, основными частями асинхронного электромотора, как электрической машины являются:

  1. Статор – основной элемент электромотора, состоящая из трехфазной (или многофазной) обмотки. Особенностью обмотки является определенный порядок расположения витков – проводники равномерно расположены в пазах, имеющих угол 120 градусов по всей окружности.
  2. Ротор – второй основной элемент агрегата, представляющий собой цилиндрический сердечник с залитыми алюминием пазами. Такая конструкция из-за своей особенности называется «беличья клетка» или короткозамкнутым типом ротора. В ней медные стержни замкнуты на концах кольцом с обеих сторон цилиндра.

Кроме самого простейшего вида асинхронного электромотора с простым ротором, к семейству асинхронных двигателей относятся и машины, которые имеют более сложную конструкцию, обмотки, у которых имеются как у статора, так и ротора.

Трехфазные обмотки, а конструктивно их по одной на каждую фазу, соединяются подобно обмоткам статора или «звездой» или «треугольником», и концы обмоток этих выводятся на контактные кольца, которые вращаются на валу, электрический ток на них передается через щетки из графита. Этот тип электродвигателей имеет большую мощность и применяется уже в промышленных машинах и станках.

Область применения

В виду особенности конструкции и простоты изготовления, подобные электромоторы нашли основное применение в машинах и механизмах в которых не требуется большое усилие и мощность при работе.

В основном, такие моторы устанавливаются практически на всех бытовых приборах:

  • мясорубки;
  • фены;
  • электрические миксеры;
  • бытовые вентиляторы;
  • небольшие маломощные бытовые станки;

Трехфазные асинхронные моторы имеют различную мощность, от 150 Вт до нескольких киловатт, и применяются в основном в промышленности в качестве моторов для машин и механизмов.

Применение подобного типа моторов обусловлено приемлемым с точки зрения соотношения мощность/производительность, к тому же, как и их простейшие собраться такие двигатели не требуют большого внимания и кропотливого обслуживания, в особенности те типы корпуса, которые специально разработаны для работы в тяжелых условиях производства.

Виды

В виду различных конструкторских задач, стоящих перед разрабатываемыми машинами и механизмами в промышленном, серийном производстве, нашли свое применение асинхронные линейные электромоторы основных четырех видов:

Моторы для однофазной сети

С короткозамкнутым ротором.

Двигатели для двухфазной сети

С короткозамкнутым ротором.

Трехфазные асинхронные двигатели

С короткозамкнутым ротором.

Трехфазные двигатели

С фазным ротором.

Особенностью конструкции является заложенный принцип работы однофазного асинхронного двигателя – у него только одна обмотка статора рабочая. А вот для пуска используется дополнительная обмотка, ее назначение – подключение к сети посредством конденсатора. Такое подключение используется для создания начального сдвига фаз и пускового момента, проще говоря, для того, чтобы вал начал вращаться.

Второй тип электрических моторов – двухфазные двигатели, имеют две рабочие обмотки. Такое техническое решение позволяет наиболее эффективно работать от однофазной сети, используя фазосдвигающий конденсатор для получения вращающегося магнитного поля.

Трехфазные асинхронники, имеют в своем составе по одной обмотке на каждую фазу подаваемого напряжения – три рабочие обмотки с соответствующим сдвигом относительно друг друга на 120 градусов. Это позволяет при включении в трехфазную сеть, получить электрическое поле, приводящее в движение короткозамкнутый ротор.

Для четвертого трехфазного асинхронника с фазным ротором, статор устроен таким же образом – три обмотки с соединением по типу звезда.

Ротор, в отличие от беличьих колес, имеет уже полноценную обмотку с выводами на щетки. Подключение обмотки, которого производится как напрямую, так и через реостаты. Такие машины имеют наибольший пусковой момент и наибольшую развиваемую мощность.

Принцип работы частотных преобразователей

Вместе со всеми положительными качествами асинхронных двигателей, существует и неприятные моменты – слишком большой пусковой ток и невозможность регулировать скорость вращения ротора.

Решить эти проблемы можно, используя частотные преобразователи.

Принцип работы такого устройства в двух словах можно описать следующим образом: с помощью электронной схемы выпрямителя, сетевое напряжение сначала сглаживается, а после, фильтруется с помощью конденсаторов.

https://www.youtube.com/watch?v=1XxaOVESscg

Использование таких частотных преобразователей при пуске, позволяет избежать обратного вращения вала двигателя, и существенно сократить (до 50%) потребляемую энергию.

Источник: https://househill.ru/kommunikacii/electrika/stabilizatory/asinxronniy-dvigatel.html

Принцип действия асинхронного двигателя — Asutpp

Электродвигатель предназначен для преобразования, с малыми потерями, электрическую энергию в механическую.

Предлагаем рассмотреть принцип действия асинхронного электродвигателя с короткозамкнутым ротором, трехфазного и однофазного типа, а также его конструкцию и схемы подключения.

Строение двигателя

Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.

Преобразование электрической энергии в механическую происходит во вращающейся части мотора – роторе.

У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.

Конструкция асинхронного двигателя

Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.

Второй очень важный закон – Фарадея:

  1. ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
  2. Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
  3. Направление ЭДС противодействует току.

Принцип действия

При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.

Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.

Принцип работы асинхронного двигателя

Когда такие двигатели действуют в качестве генератора, они будет генерировать непосредственно переменный ток. В случае такой работы, ротор вращается с помощью внешних средств скажем, турбины.

Если ротор имеет некоторый остаточный магнетизм, то есть некоторые магнитные свойства, которые сохраняет по типу магнита внутри материала, то ротор создает переменный поток в стационарной обмотке статора.

Так что это обмотки статора будут получать наведенное напряжение по принципу индукции.

Индукционные генераторы используются в небольших магазинах и домашних хозяйствах, чтобы обеспечить дополнительную поддержку питания и являются наименее дорогостоящими из-за легкого монтажа.

В последнее время они широко используется людьми в тех странах, где электрические машины теряют мощность из-за постоянных перепадов напряжения в питающей электросети.

Большую часть времени, ротор вращается при помощи небольшого дизельного двигателя соединенного с асинхронным генератором переменного напряжения.

Как вращается ротор

Вращающийся магнитный поток проходит через воздушный зазор между статором, ротором и обмоткой неподвижных проводников в роторе.

Этот вращающийся поток, создает напряжение в проводниках ротора, тем самым заставляя наводиться в них ЭДС.

В соответствии с законом Фарадея электромагнитной индукции, именно это относительное движение между вращающимся магнитным потоком и неподвижными обмотками ротора, которые возбуждает ЭДС, и является основой вращения.

Совет

Двигатель с короткозамкнутым ротором, в котором проводники ротора образовывают замкнутую цепь, в следствии чего возникает ЭДС наводящая ток в нем, направление задается законом Ленса, и является таким, чтобы противодействовать причине его возникновения.

Относительное движение ротора между вращающимся магнитным потоком и неподвижным проводником и является его действием к вращению. Таким образом, чтобы уменьшить относительную скорость, ротор начинает вращаться в том же направлении, что и вращающийся поток на обмотках статора, пытаясь поймать его.

Частота наведенной на него ЭДС такая же, как частота питания.

Гребневые асинхронные двигатели

Когда напряжение питания низкое, возбуждение обмоток короткозамкнутого ротора не происходит.

Это обусловлено тем что, когда число зубцов статора и число зубьев ротора равное, таким образом вызывая магнитную фиксацию между статором и ротором.

Этот физический контакт иначе называется зубо-блокировкой или магнитной блокировкой. Данная проблема может быть преодолена путем увеличения количества пазов ротора или статора.

Подключение

Асинхронный двигатель можно остановить, просто поменяв местами любые два из выводов статора. Это используется во время чрезвычайных ситуаций. После он изменяет направление вращающегося потока, который производит вращающий момент, тем самым вызывая разрыв питания на роторе. Это называется противофазным торможением.

Видео: Как работает асинхронный двигатель

Для того чтобы этого не происходило в однофазном асинхронном двигателе, необходимо использование конденсаторного устройства.

Его нужно подключить к пусковой обмотке, но предварительно обязательно проводится его расчет. Формула

QC = Uс I2 = U2 I2 / sin2

Схема: Подключение асинхронного двигателя

Из которой следует, что электрические машины переменного тока двухфазного или однофазного типа, должны снабжаться конденсаторами с мощностью, равной самой мощности двигателя.

Аналогия с муфтой

Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления .

Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу.

Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.

Электромагнитная муфта сцепления

Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки.

Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями.

Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.

Достоинства и недостатки

Устройство асинхронного двигателя является практически универсальным, но так же, у данного механизма есть свои плюсы и минусы.

Преимущества асинхронных двигателей переменного тока:

  1. Конструкция простой формы.
  2. Низкая стоимость производства.
  3. Надежная и практичная в обращении конструкция.
  4. Не прихотлив в эксплуатации.
  5. Простая схема управления

Эффективность этих двигателей очень высока, так как нет потерь на трение, и относительно высокий коэффициент мощности.

Недостатки асинхронных двигателей переменного тока:

  1. Не возможен контроль скорости без потерь мощности.
  2. Если увеличивается нагрузка – уменьшается момент.
  3. Относительно небольшой пусковой момент.

Источник: https://www.asutpp.ru/princip-dejstviya-asinxronnogo-dvigatelya.html

Ссылка на основную публикацию
Adblock
detector