Как подключить люминесцентные лампы – советы электрика

Устройство и схема подключения люминесцентной лампы

Лампы дневного света появились на рынке вслед за лампами накаливания. Вольфрамовая спираль, как источник светового излучения, из-за высокой температуры служит недолго и расходует много энергии. В этом главные причины поиска новых источников света.

Люминесцентная лампа стала первой из семейства газоразрядных излучателей света, которые получили широкое распространение. Для их изготовления используется доступное сырьё.

А возможность получения разнообразных вариантов формы колбы наряду с экономичностью и яркостью вывела эти лампы в ряды лидеров на рынке светотехники.

Принцип работы

Все газоразрядные лампы функционируют, используя электрический ток, протекающий через ионы газа. Газом заполняется колба, которая для наиболее эффективной ионизации делается в форме трубки. Трубка может быть как прямой, так и любой другой формы.

Электроды, размещённые на концах колбы, создают условия необходимые для свечения газа. Для этого выполняется начальная ионизация, которая называется запуском. Электроды нагреваются и в результате соприкосновения с газом ионизируют его своей температурой.

Для наиболее эффективного нагрева электроды делаются в виде спиралей расположенных между двумя контактами. Поэтому с каждого конца колбы у люминесцентной лампы есть по два контакта.

Обратите внимание

Появление ионов позволяет запустить процесс их перемещения между противоположными электродами – начинает течь электрический ток. В результате процесс появления новых ионов становится всё более интенсивным, а свечение газа усиливается.

Оно пропорционально силе тока, протекающего через газ в колбе.

Люминесцентными лампы называются из-за одноименного эффекта. Если один вид излучения поглощается веществом, которое начинает излучать другой вид излучения, значит это люминесценция. Она характерна для излучений с высокой энергией и более короткой длиной волны.

Ближайшими к видимому свету из таких излучений являются ультрафиолетовые лучи. Наиболее доступным и эффективным способом их получения является электрический разряд в парах ртути.

При относительно малой расходуемой электрической энергии пары ртути излучают наиболее мощное ультрафиолетовое излучение.

Остаётся только преобразовать его в видимый свет, основываясь на эффекте люминесценции. Это делает специальное вещество – люминофор. Его наносят в виде порошка на внутренние стенки колбы. Люминофор может светиться с оттенком света соответствующим своему химическому составу. Поэтому можно получать не только разнообразные оттенки белого света, но и многие другие цвета.

Однако если лампа накаливания подключается к электросети напрямую, люминесцентная не может быть так же подключена.

Лампа накаливания имеет активное сопротивление, которое определено свойствами вольфрамовой спирали. Это резистор, который ограничивает ток. Любая газоразрядная лампа имеет сопротивление, определяемое количеством ионов в колбе.

Важно

А оно может изменяться в широких пределах прямо пропорционально силе тока протекающего через лампу. Поэтому для необходимого режима свечения применяется ограничитель тока. Но чтобы колба засветилась надо ещё создать процесс начальной ионизации.

Поэтому устройства, которые обеспечивают работу люминесцентных ламп, называют пускорегулирующими.

Стандартное решение и схема подключения люминесцентной лампы

Стандартное пускорегулирующее устройство содержит стартер и дроссель. Стартер работает как переключатель схемы соединения контактов для разогрева электродов сразу после включения.

Таким способом обеспечивается ход процесса начальной ионизации. После этого лампа даёт свет от тока, величина которого определяется параметрами дросселя. Через один дроссель можно подключить одну или несколько ламп (схема показана выше). Параметры излучателя и дросселя должны быть согласованы.

Если дроссель будет ограничивать ток слишком сильно, свечение будет менее ярким и наоборот. Со временем спиральные электроды из-за нагрева при запуске лампы изнашиваются и перегорают. Но и стартер не безупречен. Его биметаллический контакт, замыкающий цепь накала электродов, тоже изнашивается.

И при таких неисправностях лампа перестаёт давать свет.

Новую люминесцентную лампу, как и бывшую в употреблении с повреждёнными электродами можно использовать при иной схеме подключения. Чтобы вызвать начальную ионизацию потребуется более высокое напряжение. Оно вызовет появление и размножение ионов в колбе и она засветится.

Для того чтобы ограничить ток и при этом получить необходимое по величине напряжение на лампе, применяется схема подключения люминесцентной лампы показанная далее.

В этой схеме среднее значение тока определяется величиной ёмкости конденсатора С1, а напряжение на лампе зависит от соотношений чисел витков обмоток трансформатора Т1.

Величина ёмкости, и габариты трансформатора, определяющие его мощность должны соответствовать мощности лампы EL1. Иначе её свечение не будет оптимальным по яркости.

Вместо повышающего трансформатора можно использовать схему для увеличения напряжения с диодами и конденсаторами в сочетании с дросселем. Вот пример такой схемы:

Одним из недостатков люминесцентных лам является пульсация их света. Эта особенность утомляет зрение и влияет на восприятие быстро движущихся предметов.

Например, перелистывание страниц или быстрое перемещение пальцев руки в сете люминесцентной лампы выглядит в виде отдельных мелькающих кадров. Этот эффект называется «стробоскопическим» и обусловлен переменным напряжением и током в электросети.

Совет

В лампе накаливания он существенно ослаблен инерцией остывающей спирали. Чтобы ослабить этот эффект в люминесцентной лампе её надо запитать от выпрямителя так как показано на изображении далее слева.

Но со временем по мере износа электродов при постоянном токе начинает проявляться тёмное катодное пространство вблизи катода (электрода отрицательной полярности).

Поэтому надо периодически переставлять лампу в светильнике с разворотом на 180 градусов. Можно вместо этого выполнять переключение контактов специальным переключателем. Конденсатор, установленный на выходе выпрямителя, значительно уменьшит пульсации света лампы. От стартера также можно отказаться, используя два конденсатора (показано слева).

Современные энергосберегающие лампы, так же как и большие трубчатые люминесцентные подключаются к электросети через электронные балласты. В них напряжение сначала выпрямляется, а затем преобразуется инвертором в более высокочастотное. Обычно с частотой более 20 кГц.

Электронный балласт существенно улучшает качество света. Уменьшаются визуальные пульсации, диапазон допустимого напряжения в сети расширяется, отсутствует гудение, характерное для металлических дросселей.

Изображения электронного балласта и схема подключения лампы с его использованием показаны далее.

Источник: http://podvi.ru/svetotexnika/shema-lyuminestsentnoy-lampy.html

Подключение люминесцентных ламп

Самым распространённым источником освещения, используемым в офисных, производственных и общественных помещениях, являются светильники с люминесцентными лампами. В связи с экономией энергоресурсов, их, также, частенько начали применять и в домашнем быту.

Люминесцентные светильники, кроме своих достоинств, как малое энергопотребление, простота монтажа и низкая стоимость, имеют так же ряд конструктивных недостатков. Часть из них это применение производителем дешёвых, устаревших, схем и материалов, что бы уменьшает стоимость светильника, при этом ухудшается его качество.

Схема подключения люминесцентных ламп

Как подключены лампы заводского производства, можно посмотреть, разобрав стандартный люминесцентный светильник.

Стандартная, широко распространенная схема подключения люминесцентных ламп, включает в себя стартер, дроссель, соединительные провода, и сами лампы. Улучшить такой светильник можно и самому, убрать надоедливое гудение и моргание совсем не сложно. Для этого, необходимо заменить устаревшие дроссель и стартер на новую электронную схему — (ЭПРА).

Подключение электронной схемы

В начале демонтируем светильник, вынимаем из него всю начинку. Для этой работы, нам понадобятся отвёртка, кусачки для зачистки проводов, изолента, отвёртка-тестер.

Подключение ЭПРА люминесцентных ламп довольно легко выполнить, достаточно даже минимальных познаний в электрических схемах, и навыков работы с электропроводкой. После подключения в светильнике останется сам блок, провода и лампы дневного света.

В начале работ необходимо выбрать в корпусе светильника место для установки электронного блока так, чтобы подключение к клемам было удобным. Закрепляем блок в корпусе при помощи саморезов . Соединяем блок управления с лампой и клеммой подключения.

Схема подключения 2-х люминесцентных ламп аналогична, просто они подключаются последовательно, а значит и мощность электронного блока должна быть в два раза больше. Тот же принцип, при подключении трёх и более ламп, в одном корпусе.

По окончанию сборки всей конструкции, необходимо убедиться в правильности подключения, после чего уже можно устанавливать светильник на место. Предварительно отключив питание в сети, подключаем светильник к электропроводке, соединяем провода при помощи клемных зажимов.

Теперь включаем напряжения чтоб удостовереться в правильности работы светильника. Если подключение люминесцентных ламп было выполнена правильно, то разница в работе будет значительно отличатся от предыдущего подключения.

Лампы зажгутся моментально, без разогрева, исчезнет низкочастотное гудение которое издавал дроссель, исчезнет пульсация света, заметная для человеческого глаза, и общая светимость увеличится.

Если вы не уверены в своих силах то необходимо вызвать электрика, а если вы все же решили подключить самостоятельно то стоит ознакомится с видео оно вам значительно облегчит задачу.

Источник: http://stroydomasam.ru/podklyuchenie-lyuminescentnyx-lamp.html

Определяем оптимальную схему включения люминесцентных ламп

Энергосберегающие люминесцентные светильники все больше вытесняют с прилавков устаревшие лампы накаливания.

И не удивительно, ведь они позволяют значительно сэкономить на оплате электроэнергии, да и покупать и менять их нужно не так часто.

Обратите внимание

При этом свечение люминесцентной лампы обладает гораздо лучшими эргономичными показателями: оно приятнее глазу, не так вредно для него, как желтый свет от ламп накаливания.

Там, где необходимо регулярно освещать рабочую область и длительное время работать при искусственном освещении, оптимальным вариантом будет лампа дневного света, схема подключения которой имеет свои особенности. Кому-то может показаться недостатком то, что подключение таких ламп имеет некоторые нюансы, но ознакомившись с подробными инструкциями и изображениями, подключить такой светильник сможет практически каждый.

Cтартерная схема включения люминесцентных ламп

Для подключения люминесцентных светильников (линейных ламп) с электромагнитным пускорегулирующим аппаратом (ПРА, дроссель) необходимо использовать стартеры. Для подключения одиночного светильника рассмотрим пример со стартером S10.

Современная конструкция в союзе с невозгораемым внешним диэлектрическим корпусом из макролона делают этот прибор одним из самых надежных и востребованных в своей нише.

Функции стартера в схеме следующие:

  • обеспечение к.з. в цепи для облегчения зажигания за счет разогрева электродов лампы;
  • обеспечение пробоя газового промежутка путем разрыва цепи после достаточного нагрева электродов, благодаря чему вызывается высоковольтный импульс и собственно пробой.

Дроссель (ПРА) необходим для выполнения следующих задач:

  • ограничение тока при замыкании стартерных электродов;
  • за счет э.д.с. самоиндукции, возникающей в момент размыкания стартерных электродов, генерируется необходимый импульс напряжения для пробоя газоразрядной лампы;
  • обеспечение стабильного горения духового разряда после зажигания лампы.

Для приведенной ниже схемы взята лампа мощностью 36(40)Вт, поэтому необходим дроссель (ПРА) такой же мощности и стартер S10, мощность которого 4-65 Вт.

Подключение необходимо провести в соответствии со схемой на рисунке, а именно:

  1. к штыревым выходным контактам линейной люминесцентной лампы, являющимся выводами нити накаливания колбы, подключить параллельно стартер;
  2. для подключения стартера использовать по одному штыревому выводу на каждом конце лампы;
  3. к оставшимся свободным контактам лампы подключается, также параллельно сети, индукционный дроссель (ПРА);
  4. параллельно питающим выходам (контактам) лампы подключается непременно конденсатор: он будет отвечать за компенсацию мощности (реактивной), а также за снижение помех в электросети.

Подключение ламп дневного света без стартера с помощью ЭПРА

Электронная пускорегулирующая аппаратура (ЭПРА) для люминесцентных источников освещения, или иначе балласт, необходима для подключения лампы к сети и выполняет по сути роль преобразователя.

Необходимость этого элемента обусловлена особенностями конструкции и принципа работы самой люминесцентной газоразрядной лампы, которая представляет собой источник света с отрицательным сопротивлением.

Лампа может выйти из строя вследствие подачи на высоких по силе токов. При подключении лампы дневного света с помощью ЭПРА обеспечивается установка и сохранение в допустимых пределах параметров питающего электрического напряжения для осветительного прибора.

Особенностью ЭПРА является то, что для включения лампы не нужно больше ничего, в том числе и стартера.

Бесстартерная схема включения люминесцентных ламп с применением ЭПРА обеспечивает:

  • повышение надежности и долговечности работы лампы;
  • отсутствие гула и мерцаний.

Неоспоримыми преимуществами ЭПРА являются малые габариты и более выгодная стоимость в сравнении с электромагнитными дросселями, уступающими по всем параметрам.

Обычно ЭПРА продаются в комплекте с необходимыми проводами и коннекторами (металлическими клипсами), а также есть модели для удобного подключения сразу двух люминесцентных ламп.

Электронная схема подключения люминесцентных светильников приведена ниже. Она актуальна для новых и значительно более энергоэфеткивных ламп типа Т8 иТ5.

Процесс запуска лампы условно можно разделить на три этапа (аналогично другим способам включения):

  • прогревание электродов для более бережного пуска, следовательно, для сохранения продолжительности жизни лампы;
  • генерация импульса высокого напряжения, необходимого для поджига;
  • стабилизация и последующая подача необходимого рабочего напряжения.
Читайте также:  Как подключить трансформаторы тока к трехфазному счетчику - советы электрика

Благодаря включению в схему бесстартерной установки люминесцентных ламп микросхемы IR2153 реализована защита системы от перегорания или от последствий включения при отсутствии лампы, за счет блокировки работы силовых транзисторов.

Двухламповая схема подключения люминесцентных ламп

На примере двух 18-ваттных люминесцентных ламп рассмотрим, что необходимо для подключения и как проводится работа. Схема подключения с указанием проводов приведена ниже.

Для подключения последовательно двух люминесцентных светильников вам понадобится:

  • 2 люминесцентные лампы (в данном случае мощностью 18/20 Вт);
  • Индукционный дроссель (для описанной схемы мощность 36/40Вт);
  • 2 стартера S2 (4-22Вт).

Для начала к каждому из линейных люминесцентных светильников подключается параллельно стартер. Для этого необходимо задействовать по одному штыревому выходу с двух торцов каждой лампы. Оставшиеся свободными контакты подключаются последовательно, через индукционный электромагнитный дроссель, к сети электропитания.

Для того, чтобы компенсировать реактивную мощность, а также с целью снизить помехи, регулярно возникающие в любой в электросети, подключаются конденсаторы, параллельно запитывающим контактам ламп. Однако, имейте в виду, что контакты многих стандартных бытовых выключателей, особенно недорогих, могу залипать от высоких пусковых токов.

Современная пускорегулирующая аппаратура имеет небольшие габариты и устроена таким образом, чтобы не просто подключать светильники, но и обеспечивать надежность и безопасность работы схем, защиту от перепадов напряжения и других факторов. С помощью электронных схем можно реализовать подключение более сложных систем, например, подсветку рекламных стендов, организовывать освещение больших промышленных или складских помещений.

Также люминесцентные технологии и подключение линейных источников света используется в медицинских заведениях, офисных помещениях.

Тут пускорегулирующая аппаратура позволяет обеспечить бесперебойное освещение, безопасность, легкость и оперативность замены сгоревших (выработавших свой ресурс) ламп.

При этом особенности конструкции самих ламп и электронных современных дросселей обеспечивают высокую эффективность и экономичность использования таких технологий.

Поэтому очевидна тенденция повсеместного перехода на современные экологичные и экономичные люминесцентные светильники.

Схемы и способы подключения не сложны, требуют минимум оборудования и доп.

элементов, которые всегда находятся в открытой продаже.

Видеообзор с описанием одного из способов включения лампы дневного света — от 220 Вольт

Источник: http://elektrik24.net/osvetitelnye-pribory/lampy/energosberegayushhie/lyuminescentnye/sxema-vklyucheniya.html

Подключение люминесцентных ламп без дросселя и стартера | Каталог самоделок

К сожалению, даже подключенные к современной электронной пускорегулирующей аппаратуре (ЭПРА) люминесцентные лампы перегорают. Такое случается с большими светильниками, и с компактными люминесцентными лампами (КЛЛ), более известными как экономлампы. И если сгоревшую электронику починить можно, то лампу с перегоревшей нитью попросту выбрасывают.

Понятно, что если у лампы, подключенной до дросселя со стартером или к ЭПРА, перегорит одна из нитей накала, то светильник уже не включится. Кроме того, старая «брежневская» схема подключения имеет ещё несколько недостатков: затяжной запуск стартером, сопровождающийся раздражающими миганиями; мерцание лампы с удвоенной частотой сети.

Однако выход прост — запитать люминесцентную лампу не переменным, а постоянным током, и чтобы не использовать капризные стартеры, нужно приложить при запуске повышенное напряжение сети. Таким образом, мало того, что источник света перестанет мерцать, но и после подключения по новой схеме даже перегоревшая люминесцентная лампа проработает ещё не один год.

Для запуска с умноженным напряжением сети не понадобится нагревать спирали — электроны для начальной ионизации будут вырваны уже при комнатной температуре, даже из перегоревших спиралей.

Так как не нужен нагрев до температуры 800–900 градусов для тлеющего стартового разряда, то резко продлевается срок службы любой люминесцентной лампы, и с целыми спиралями.

После запуска, кусочки нитей становятся теплыми за счет стабильного потока электронов. Простейшая схема, имеющая эти преимущества, следующая:

Важно

На рисунке показана схема двухполупериодного выпрямителя с удвоением напряжения, здесь лампа загорается мгновенно

При подключении по такой схеме нужно соединить вместе оба внешних вывода каждой нити накала лампы — без разницы, перегоревшие они, или целые.

Конденсаторы С1, С4 нужны неполярные с рабочим напряжением более чем в 2 раза больше сетевого (например, МБМ не ниже 600 вольт). В этом и есть главный минус схемы — в ней применяются два конденсатора большой емкости, на высокое напряжение. Такие конденсаторы имеют значительные габариты.

Конденсаторы С2, С3 тоже нужны неполярные и желательно, чтобы они были слюдяными на напряжение 1000 В.

На диодах Д1, Д4 и конденсаторах С2, С3 напряжение подскакивает до 900 В, чем обеспечивается надежное зажигание холодной лампы. Также эти две емкости способствуют подавлению радиопомех.

Светильник можно зажечь и без этих конденсаторов и диодов, но с ними включение становится более безотказным.

Резистор нужно намотать самостоятельно из нихромовой или манганиновой проволоки. Рассеиваемая на нем мощность значительна, так как светящаяся люминесцентная лампа не имеет своего внутреннего сопротивления.

Подробные номиналы элементов схемы в зависимости от мощности светильника приведены в таблице:

Совет

Диоды можно использовать необязательно указанные в таблице, а аналогичные современные, главное, чтоб они подходили по мощности.

Чтобы зажечь неподдающуюся лампу на один из концов наматывают колечко из фольги и соединяют его проводком со спиралью на противоположной стороне. Такой ободок шириною в 50 мм вырезается из тонкой фольги и приклеивается к колбе лампы.

Следует заметить, что люминесцентная лампа вовсе не предназначена для работы на постоянном токе.

При таком питании световой поток от неё со временем ослабевает из-за того, что пары ртути внутри трубки постепенно собираются возле одного из электродов.

Хотя, восстановить яркость свечения достаточно легко, нужно лишь перевернуть лампу, поменяв местами плюс с минусом на её концах. А чтобы вовсе не разбирать светильник, имеет смысл заранее установить в нем переключатель.

В цоколе маленькой КЛЛ уместить такую схему, разумеется, не получиться. Но и зачем это нужно! Можно же всю схему пуска собрать в отдельной коробке и через длинные провода подсоединить к светильнику. Важно из энергосберегающей лампы вытянуть всю электронику, а также соединить два вывода каждой её нити накоротко. Главное, не забыть, и не всунуть в такой самодельный светильник исправную лампу.

Рекомендуем также прочитать:

  1. Подключение люминесцентных ламп с дросселем.
  2. ЭПРА для люминесцентных ламп

Источник: https://volt-index.ru/muzhik-v-dome/svoimi-rukami/podklyuchenie-lyuminestsentnyih-lamp-bez-drosselya-i-startera.html

Принцип работы и схема подключения люминесцентных ламп

Февраль 2, 2014

47043 просмотров

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу.

Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон.

Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии.
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.

  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды.

    Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.

Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.

Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.


Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

Источник: http://jelektro.ru/vse-o-elektromontazhe/rabota_ljuminescentnyh_lamp.html

Статьи по теме

Лампы дневного света давно и прочно вошли в нашу жизнь, а сейчас приобретают наибольшую популярность, так как электроэнергия постоянно дорожает и использование обычных ламп накаливания становится довольно дорогим удовольствием.

А энергосберегающие компактные лампы не всем могут быть по карману, да и современные люстры требуют большого их количества, что ставит под сомнение экономию средств.

Именно поэтому в современных квартирах устанавливается все больше люминесцентных ламп.

Содержание

Устройство люминесцентных ламп

Чтобы понять, как работает лампа дневного света, следует немного изучить ее устройство. Лампа состоит из тонкой стеклянной цилиндрической колбы, которая может иметь различный диаметр и форму.

Лампы могут быть:

  • прямые;
  • кольцевые;
  • U-образные;
  • компактные (с цоколем Е14 и Е27).

Хоть они все отличаются по внешнему виду объединяет их одно: все они имеют внутри электроды, люминесцентное покрытие и закачанный инертный газ, в котором находятся пары ртути.

Электроды представляют собой небольшие спирали, которые раскаляются на короткий промежуток времени и зажигают газ, благодаря которому люминофор, нанесенный на стенки лампы, начинает светиться.

Так как спирали для розжига имеют маленький размер, то стандартное напряжение, имеющееся в домашней электросети, для них не подходит.

Обратите внимание

Для этого применяют специальные приборы – дроссели, которые ограничивают силу тока до номинального значения, благодаря индуктивному сопротивлению. Также, чтобы спираль разогревалась кратковременно и не перегорела, используют еще один элемент – стартер, который после зажигания газа в трубках лампы, отключает накал электродов.

Дроссель

Стартер

Принцип работы лампы дневного света

На клеммы собранной схемы подается напряжение 220В, которое проходит через дроссель на первую спираль лампы, далее переходит на стартер, который срабатывает и пропускает ток на вторую спираль, подключенную к сетевой клемме. Наглядно это видно на схеме, представленной ниже:

Зачастую на входных клеммах устанавливают конденсатор, играющий роль сетевого фильтра. Именно его работе часть реактивной мощности, вырабатываемой дросселем, гасится, и лампа потребляет меньше электроэнергии.

Как подключить лампу дневного света?

Схема подключения люминесцентных ламп, приведенная выше, является простейшей и предназначена для розжига одной лампы. Для того, чтобы выполнить подключение двух ламп дневного света, необходимо немного изменить схему, действуя по тому же принципу последовательного соединения всех элементов, так, как показано ниже:

В данном случае используется два стартера, по одному на каждую лампу. При подключении двух ламп к одному дросселю следует учитывать его номинальную мощность, которая указана на его корпусе. Например, если он имеет мощность 40 Вт, то к нему можно подключить две одинаковые лампы, имеющие нагрузку не более 20 Вт.

Существуют также и схема подключения лампы дневного света без использования стартеров. Благодаря использованию электронных балластных устройств розжиг ламп происходит мгновенно, без характерного «моргания» со стартерными схемами управления.

Электронные балласты

Подключить лампу к таким устройствам очень просто: на их корпусе расписана детальная информация и схематически показано, какие контакты лампы необходимо соединить с соответствующими клеммами. Но чтобы было совсем понятно, как выполнить подключение лампы дневного света к электронному балласту, нужно взглянуть на простую схему:

Преимуществом данного подключения является отсутствие дополнительных элементов, необходимых для стартерных схем управления лампами. К тому же, с упрощением схемы увеличивается надежность работы светильника, так как исключаются дополнительные соединения проводов со стартерами, которые являются еще и довольно ненадежными устройствами.

Ниже приведена схема подключения к электронному балласту двух люминесцентных ламп.

Как правило, в комплекте с электронным балластным устройством уже имеются все необходимые провода для сборки схемы, поэтому нет необходимости что-то придумывать и нести дополнительные расходы для покупки недостающих элементов.

Как проверить лампу дневного света?

Если лампа перестала зажигаться, то вероятной причиной ее неисправности может быть обрыв вольфрамовой нити, которая разогревает газ, заставляя светиться люминофор. В процессе работы вольфрам постепенно испаряется, оседая на стенках лампы. При этом на краях стеклянной колбы появляется темный налет, предупреждающий о том, что скоро лампа может выйти из строя.

Как проверить целостность вольфрамовой нити? Очень просто, необходимо взять обычный тестер, которым можно измерить сопротивление проводника и прикоснуться к выводным концам лампы щупами.

Прибор показывает сопротивление 9,9 Ом, что красноречиво говорит нам, что нить цела.

Важно

Проверяя вторую пару электродов, тестер показывает полный ноль, эта сторона имеет обрыв нити и поэтому лампа не хочет зажигаться.

Обрыв спирали происходит от того, что со временем нить истончается и постепенно возрастает напряжение, проходящее через нее. Благодаря повышению напряжения выходит из строя стартер – это видно по характерному «морганию» ламп. После замены сгоревших ламп и стартеров схема должна работать без наладки.

Если включение ламп дневного света сопровождается посторонними звуками или слышен запах гари, следует немедленно обесточить светильник и проверить работоспособность всех его элементов.

Имеется вероятность того, что на клеммных соединениях образовалась слабина и греется подключение проводов.

Кроме этого, дроссель, если изготовлен некачественно, может иметь витковое замыкание обмоток и, как следствие, выход из строя ламп дневного света.

Источник: http://strport.ru/elektrooborudovanie-svet-osveshchenie/kak-podklyuchit-lampu-dnevnogo-sveta

Схема подключения люминесцентной лампы

Содержание:

Источники дневного света начинают светиться под влиянием импульсного разряда электрического тока, возникающего в смешанной среде с инертным газом и парами ртути.

Подобное действие приводит к возникновению физических и химических реакций, вызывающих излучение в ультрафиолетовом диапазоне. Ультрафиолет воздействует на люминофорный слой, нанесенный изнутри стеклянной колбы, и прибор начинает светиться полным светом.

Для того чтобы перечисленные действия произошли в установленной последовательности, должна соблюдаться определенная схема подключения люминесцентной лампы.

Как работает лампа дневного света

Принцип действия ламп дневного света основан на ультрафиолетовом излучении, воздействующем на люминофорное покрытие стеклянной колбы.

Установлено, что оно возникает под влиянием электрического тока на ртутные пары, расположенные в среде инертного газа и разогретые до установленной температуры.

Попадая на люминофор, ультрафиолетовое излучение переходит в другой диапазон, становится видимым, создавая основной световой поток и позволяя зажечь прибор освещения.

Совет

Для того чтобы обеспечить подобные физические и химические реакции, конструкция типового линейного люминесцентного светильника выполнена в виде стеклянной колбы цилиндрической формы.

Ее внутренняя поверхность покрыта люминофором, а все пространство заполнено аргоном или другими видами инертных газов. Здесь же находится и небольшое количество ртути, которая начинает испаряться под действием электронов.

Источником их эмиссии служат вольфрамовые электроды, покрытые активными веществами.

Однако, ртуть не может начать испаряться под влиянием одного лишь сетевого напряжения, которого недостаточно для этих целей. Работа лампы может начаться только при участии специальных пускорегулирующих устройств.

Их основной функцией является создание кратковременного скачка напряжения, обеспечивающего начало запуска и последующего свечения. Далее эти устройства ограничивают рабочий ток, пресекая его неконтролируемый рост.

Пускорегулирующая аппаратура разделяется на электромагнитную и электронную, каждую из которых требуется установить по собственной схеме.

Подключение с электромагнитным балластом

Основным компонентом электромагнитного пускорегулирующего устройства – ЭмПРА – является дроссель. Следует учесть, что мощности лампы и аппаратуры должны быть одинаковыми. Данные приборы изначально применялись с люминесцентными лампами и продолжают использоваться до настоящего времени.

Работа устройства происходит в определенной последовательности. Вначале подается электрический ток, вступающий во взаимодействие со стартером. Это вызывает замыкание биметаллических электродов на короткое время, после чего они начинают стремительно разогреваться.

При этом, ток возрастает в несколько раз и ограничивается внутренним сопротивлением дросселя. Под действием сильного импульсного разряда зажигаем смесь, и газовая среда начинает светиться. Напряжение стартера во внутренней цепи лампы падает и уже не может образовать повторный импульс.

Начинается стабильная работа люминесцентной лампы.

Данная схема считается устаревшей и постепенно выходит из обращения из-за существенных недостатков в работе:

  • По сравнению с электронными устройствами, энергопотребление ЭмПРА выше примерно на 10-15%.
  • С увеличением срока эксплуатации, запуск лампы через дроссель будет замедляться до нескольких секунд.
  • Постепенно появляется гудение, вызываемое изношенными пластинами дросселя.
  • По мере использования лампы, ее коэффициент пульсации света будет увеличиваться. Мерцание вызывает быструю утомляемость глаз, а его продолжительное воздействие приводит к ухудшению зрения.
  • Невозможность работы при низких температурах исключает возможность применения ламп дневного света в наружном освещении или в неотапливаемых помещениях.

Схема подключения с электронной ЭПРА

В настоящее время электромагнитный балласт постепенно выходит из употребления и заменяется более современной электронной пускорегулирующей аппаратурой – ЭПРА. Ее основное отличие заключается в высокой частоте напряжения, составляющей 25-140 кГц. Именно с такими показателями ток подается к лампе, что позволяет в значительной степени снизить мерцание и сделать его безопасным для зрения.

Схема подключения ЭПРА со всеми пояснениями указывается производителями на нижней части корпуса. Здесь же указано, сколько ламп и какой мощности можно подключить. Внешний вид электронного балласта представляется собой компактный блок с клеммами, выведенными наружу. Внутри расположена печатная плата, на которой собираются элементы конструкции.

Благодаря небольшим размерам, блок можно разместить даже внутри компактных люминесцентных ламп. В данном случае фактически используется схема подключения люминесцентных ламп без стартера, поскольку в электронных устройствах он не требуется. Процесс включения происходит значительно быстрее по сравнению с электромагнитной аппаратурой.

Обратите внимание

Типовая схема подключения представлена на рисунке. К контактам №№ 1 и 2 подключается первая пара контактов лампы, а к контактам №№ 3 и 4 подключается вторая пара. К контактам L и N, расположенным на входе, подается питающее напряжение.

Использование ЭПРА позволяет увеличить срок эксплуатации светильника, в том числе и с двумя лампами. Потребление электроэнергии снижается примерно на 20-30%. Мерцание и гудение совершенно не ощущаются человеком. Наличие схемы, указанной производителем облегчает и упрощает монтаж и замену изделий.

Подключение лампы без дросселя

В стандартную схему подключения в случае необходимости могут быть внесены изменения. Одним из таких вариантов является схема подключения люминесцентной лампочки без дросселя, снижающая риск перегорания источника освещения. Таким же образом возможно собрать и подключить лампы дневного света, вышедшие из строя.

В схеме, представленной на рисунке, отсутствует нить накаливания, а питание осуществляется посредством диодного моста, создающего напряжение с постоянным повышенным значением. Данный способ подключения приводит к тому, что колба осветительного прибора может со временем потемнеть с одной из сторон.

На практике такая схема включения люминесцентной лампы совсем несложно реализуется, с использованием для этой цели старых деталей и компонентов. Понадобится сама лампа, мощностью 18 ватт, диодный мост в виде сборки GBU 408, конденсаторы, емкостью 2 и 3 нФ и рабочим напряжением не более 1000 вольт.

Если мощность прибора освещения более высокая, то потребуются конденсаторы с повышенной емкостью, собранные по такому же принципу. Диоды для моста следует подбирать с запасом по напряжению. Яркость свечения при такой сборке будет немного ниже, чем при стандартном варианте с дросселем и стартером.

Кроме того, при решении задачи, как подключить люминесцентную лампу, удается избежать большинства недостатков, характерных для обычных светильников этого типа, использующих ЭмПРА.

Светильник с диодным мостом подключается легко, он будет загораться практически мгновенно, во время работы не будет шума.

Важным условием является отсутствие стартера, который часто перегорает в результате длительной эксплуатации. Использование перегоревших светильников дает возможность сэкономить.

В роли дросселя используются стандартные модели лампочек накаливания, не требуется громоздкого и дорогостоящего балласта.

Подключение двух ламп с двумя стартерами и одним дросселем

Еще один вариант предполагает подключение люминесцентных ламп, мощностью по 18 ватт каждая, с дросселем на оба светильника и двумя отдельными стартерами.

Для создания схемы с двумя источниками света потребуется установка следующих компонентов:

  • Лампы дневного света в количестве двух штук, мощностью 18 или 20 Вт.
  • Дроссель индукционного типа. Его мощность для данной схемы должна быть 36 или 40 Вт.
  • Стартеры (2 шт.) модели S2, мощностью 4-22 Вт.

Вначале каждый люминесцентный светильник соединяется со стартером путем параллельного подсоединения. С этой целью используются штыревые контакты, расположенные в торцах.

Это видно на представленном рисунке, где наглядно просматривается монтаж деталей.

Остальные контакты соединяются последовательно, после чего они будут подключаться к электромагнитному дросселю и далее – к сети переменного тока на 220 вольт.

Для компенсации реактивной мощности и снижения помех, параллельно с лампами выполняется включение в цепь важных элементов – конденсаторов. Соединение осуществляется через контакты, по которым поступает питание из сети. В этом случае следует учитывать возможное залипание контактов бытового выключателя под влиянием большого пускового тока.

Важно

Существуют и другие способы соединения и подключения, наиболее подходящие для люминесцентных светильников, в том числе без дросселя и стартера, применяемые в конкретных условиях эксплуатации.

Наиболее высокий эффект дает схема подключения люминесцентной лампы с электронной аппаратурой, обеспечивающей надежную и безопасную работу.

При ее участии могут подключаться и более сложные системы, используемые в рекламе или освещении больших производственных площадей.

Источник: https://electric-220.ru/news/skhema_podkljuchenija_ljuminescentnoj_lampy/2019-02-14-1650

Схема подключения люминесцентной лампы

Лампы дневного света достаточно обширно всераспространены в использовании, так как владеют некими преимуществами перед лампами накаливания.

А конкретно, они экономнее в потреблении электроэнергии, так как меньше расходуют энергии на образование тепла, так же у их более растерянный свет и имеется возможность выбирать свечение с определённым цветом, хотя более пользующиеся популярностью и ходовые всё же являются с белоснежным свечением.

 Ну, а что касается специфичности их работы, то скажу последующее: для хоть какой люминесцентной лампы либо лампы дневного света, нужны определённые условия. Другими словами, так как в их содержится инертный газ с парами ртути, как понятно, газы являются нехорошими проводниками электронного тока. И для их зажигания требуется высочайшее напряжение пробоя.

 Так же, для облегчения этого зажигания, делаются изнутри люминесцентной лампы спиральки, которые при подачи напряжения накаляются и тем упрощают выход электронов из металла электродов. Беря во внимание данные условия, обычное подключение к контактам лампы дневного света сетевого напряжения не пойдет.

Для этого в один прекрасный момент выдумали очень ординарную схему на дросселе. В ней смешиваются все подходящие условия для воплощения зажигания и предстоящего горения люминесцентной лампы.

Дроссель, как Вы должны знать, при подаче на него переменного напряжения способен ограничить силу тока, за счет индуктивного сопротивления.

Это нам пригодится для предстоящего поддержания конкретного горения люминесцентной лампы.

Совет

Ещё дроссели могут выдавать огромные ЭДС, за счет внутренней самоиндукции, но для этого нужно сделать в цепи питания краткосрочное прерывания, в виде замыкания и размыкания. Это и обеспечивает ещё один элемент схемы, под заглавием стартёр.

И так, на вход схемы лампы дневного света подается сетевое напряжение 220в. Оно проходит через дроссель и поступает на первую спиральку лампы, с неё перебегает на стартёр и с него идёт во вторую спиральку, с которой поступает на вторую клемму сетевого напряжения. Первым в этой цепи срабатывает стартёр.

Напряжение зажигания тлеющего разряда стартера меньше напряжения сети, но больше рабочего напряжения лампы. Его  внутренние контакты греются и замыкаются, тем обеспечивая прохождение тока через спиральки лампы, нагревая их до температуры 800-900 градусов. Это позволяет легче проходить запуску лампы.

После, контакты стартера остывают и размыкаются, что даёт краткосрочный импульс на дроссель, а он выдаёт выброс высочайшего напряжения на электроды люминесцентной лампы, обеспечивая тем пробой и предстоящее горение. Что касается подключённой емкости на входе.

Это сетевой фильтр для гашения реактивной мощности, которую производит дроссель. Без ёмкости естественно лампа то же будет работать, но при всем этом потребляя больше электроэнергии из сети. В первом варианте схемы происходит включение одной лампы.

  В данном случае элементы схемы будут такими: если лампа на 40Вт, то и дроссель на 40Вт, а стартер на напряжение 220в (если лампа одна). При подключении 2-ух ламп к одному дросселю, общая схема уже имеет вид варианта 2, на нашем рисунке.

В данном случае: дроссель на 40 Вт, а лампы на 20Вт и стартера, напряжением  по 127в каждый. Ну а конденсатор, в первом и втором варианте можно поставить на напряжение не меньше сетевого, а лучше с припасом и емкостью около 0.22мкФ.

Ниже приведена таблица (для общего ознакомления) соответствия частей схемы ( импортных комплектующих — лампы, дросселя, стартера и конденсатора  ). А так же указанны случаи при которых может быть подключения 2-ух ламп на один дроссель.

Источник: http://elektrica.info/shema-podklyucheniya-lyuminestsentnoj-lampy/

Как подключить люминесцентную лампу с традиционным электромагнитным дросселем, с электронным дросселем, с перегоревшими нитями разогрева, а также полезные советы для увеличения срока эксплуатации ламп

Схема подключения люминесцентных ламп – это графическое изображение соединения различных деталей, совместная работа которых обеспечивает излучение света осветительным прибором.

Правильно выполненное подключение обеспечит максимально возможное время эксплуатации ламп, снизит создающее некомфортность гудение электромагнитного балласта, но и обеспечит существенную экономию электроэнергии по сравнению с лампами накаливания – более пятнадцати процентов. Люминесцентные  лампы при работе излучают намного меньшее количество тепла, чем традиционные лампы накаливания. Это дает возможным применять для дизайнерского оформления светильников даже те материалы, которые представляют опасность с позиций легкой возгораемости.

Подключить люминесцентную лампу намного сложнее, чем обычную лампу накаливания. Это вызвано характером получения видимого света, используемого для освещения.

Как происходит процесс включения лампы дневного света

Люминесцентная лампа – это своеобразный трансформатор, преобразующий частоты света – недоступного зрению ультрафиолетового излучения в видимый свет, излучаемый атомами вещества, из которого изготавливается слой внутреннего покрытия лампы.

Как происходит включение люминесцентной лампы

Конструкционно люминесцентная лампа выполнена как герметичнаф стеклянная колба, внутрь которой закачена специальная смесь газов. Состав смеси подбирается так, чтобы потребность в электроэнергии для процесса ионизации атомов газовой смеси требовалось значительно меньше, чем для обеспечения работы лампы накаливания такой же мощности.

Для того, чтобы люминесцентная лампа служила постоянным источником света необходимо постоянная ионизация. Для этого в системе постоянно поддерживается тлеющий разряд с помощью непрерывной подачи необходимого напряжения на ламповые электроды.

Отличается от ламп накаливания и процесс, в результате которого начинают светиться люминесцентные лампы. Чтобы начался процесс ионизации требуется высоковольтный разряд, который происходит после прогрева смеси газов вокруг электродов.

Чтобы обеспечить протекание этого процесса в лампе имеются две тонкие спирали подогрева. При подаче на спирали электрического тока они разогреваются и этот разогрев делает более легким выход анионов – отрицательно заряженных частиц.

Обратите внимание

Напряжение в сети, то есть 220 вольт, поданное непосредственно на спирали, вызовет их перегорание, поэтому используют схемы запуска через индуктивный дроссель.

В этом элементе при подаче переменного напряжения начинают возникать электромагнитные процессы, ограничивающие силу тока, который протекает по цепи, в результате чего достигается ограничение сетевого напряжения. Для протекания этого процесса на электроды подается высоковольтный импульс.

Индуктивный дроссель также служит генератором импульса высоковольтного напряжения благодаря которому  осуществляется пробой газовой смеси в внутреннем пространстве люминесцентной лампы.

Высокая электродвижущая сила возникает в результате внутренней самоиндукции дросселя. Для получения импульса требуется включение в схему элемента, который обеспечит в цепи кратковременное прерывание.

Такую функцию выполняет электрический стартер.

Таким образом в целом схематически протекание электрического тока в включаемой люминесцентной лампе можно представить следующим образом:

  • сетевое напряжение подается на индуктивный дроссель;
  • пройдя через индуктивный дроссель ток подается на первую разогревающую спираль лампы;
  • пройдя первую разогревающую спираль ток идет на стартер – его контакты разогреваясь замыкаются и ток разогревает спирали нагрева до 900˚С, a затем размыкаются вызывая высоковольтный импульс дросселя;
  • импульс подается на ламповые электроды и вызывает пробой и инициирование работы лампы.

Чтобы обеспечить такое прохождения тока создаются различные схемы для подключения люминесцентных ламп.

Классическая схема c использованием электромагнитного балласта

Совокупность дросселя и стартера также называют электромагнитным балластом. Схематически такой вид подключения можно представить в виде нижерасположенного рисунка.

Для увеличения коэффициента полезного действия,a также уменьшения реактивных нагрузок в схему вводятся два конденсатора – они обозначены С1 и С2.

  • Обозначение LL1- дроссель, иногда его называют балластником.
  • Обозначение Е1 – стартер, как правило он представляет собой небольшую лампочку тлеющего разряда c одним подвижным биметаллическим электродом.

Изначально, до подачи тока эти контакты разомкнуты, поэтому ток в схеме напрямую на лампочку не подается, а нагревает биметаллическую пластину, которая нагреваясь выгибается и замыкает контакт.

В результате возрастает ток, нагревающий нити нагрева в люминесцентной лампе, а самом стартере ток уменьшается и электроды размыкаются.

В балласте начинается процесс самоиндукции, приводящий к созданию высокого импульса напряжения, обеспечивающего образование заряженных частиц, которые взаимодействуя с люминофором покрытия, обеспечивают возникновение светового излучения.

Такие схемы с использованием балласта имеют ряд достоинств:

  • небольшая стоимость требуемого оборудования;
  • простота в использовании.

К недостаткам таких схем можно отнести:

  • «мерцающий» характер светового излучения;
  • значительный вес и крупные габариты дросселя;
  • долгое зажигание люминесцентной лампы;
  • гудение работающего дросселя;
  • почти 15% потерь энергии.
  • невозможно использовать совместно с устройствами, которые плавно регулируют яркость освещения;
  • на холоде включение значительно замедляется.

Дроссель выбирают строго в соответствии c инструкцией к конкретному виду люминесцентных ламп. Это обеспечит полноценное выполнение им своих функций:

  • ограничивать в требуемых значениях величину тока при замыкании электродов;
  • генерировать достаточное для пробоя газовой среды в колбе лампы напряжение;
  • обеспечивать поддержку горения разряда на стабильном постоянном уровне.

Несоответствие выбора приведет к преждевременному износу ламп. Как правило, дроссели имеют ту же мощность, что и лампа.

Среди наиболее распространенных неисправностей светильников, в которых используют люминесцентные лампы, можно выделить такие:

  • отказ дроселля, внешне это появляется в почернении обмотки, в оплавлении контактов: проверить его работоспособность можно самостоятельно, для этого понадобится омметр – сопротивление исправного балласта составляет порядка сорока Ом, если омметр показывает менее тридцати Ом – дроссель подлежит замене;
  • отказ стартера – в этом случае лампа начинает светиться только по краям, начинается мигание, иногда лампочка стартера светится, нол сам светильник не зажигается, устранить неисправность можно только заменой стартера;
  • иногда все детали схемы исправны, но светильник не включается, как правило, причиной является потеря контактов в ламподержателях: в некачественных светильниках они изготавливаются из некачественных материалов и поэтому плавятся – устранить такую неисправность можно только заменой гнезд ламподержателей;
  • лампа мигает по типу стробоскопа, по краям колбы наблюдается почернение, свечение очень слабое – устранение неисправности замена лампы.

Схема для подключения нескольких ламп

Преимущественно во всех светильниках используют не одну люминесцентную лампу, а несколько, минимум две. B этом случае элементы соединяют в схеме последовательно: А между проводами фазы и ноля устанавливается конденсатор. Их включают в схемы для предотвращения помех в общей электросети, а также для компенсирования возникающей реактивной мощности.

Недостаток такой схемы – параллельность подключения. Если испортится один элемент схемы – все остальные также не будут работать.

Использование электронного балласта для подключении люминесцентных ламп

На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.

Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.

Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.

Важно

Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.

Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.

К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.

Устройство электронного балласта

Как видно из принципиальной схемы, пускатель в виде электронного баласта является своеобразным преобразователем напряжения. Миниатюрный инвертор преобразует постоянный ток в переменный высокой частоты. Этот ток подается на электроды-нагреватели.

Интенсивность нагревания этих электродов повышается. Включение преобразователя сделано так, что на первых этапах частота тока имеет высокую частоту. Сама люминесцентная лампа включена в контур, у которого резонансная частота меньше, чем начальная частота преобразователя.

B дальнейшем частота уменьшается, a напряжение, a напряжение на колебательном контуре и на лампе растет,  в результате чего контур начинает приближаться к резонированию. Одновременно увеличивается степень нагрева электродов.

Это приводит к созданию условий возникновения разряда в газовой смеси и люминофорное покрытие колбы начинает светиться.

Электронный балласт составляется таким образом, чтобы регулирующее устройство могло подстраиваться под те характеристики, которые имеет люминесцентная лампа.

Это дает возможность сохранять изначальные световые характеристики осветительного прибора в течение продолжительного времени. По мере износа люминесцентные лампы требуют все большего напряжения для достижения момента начального разряда.

Электронный балласт самостоятельно подстраивается под произошедшие изменения и качество освещения остается прежним.

По сравнению с дроссельным, электронный балласт имет несколько достоинств:

  • он обеспечивает большую экономичность при эксплуатации;
  • дает возможность создать условия для бережного нагревания электродов;
  • обеспечивает плавное включение лампы;
  • использование электронного баланса дает возможность преодолеть такой недостаток люминесцентного освещения, как мерцание;
  • дает возможность применять люминесцентные лампы в условиях холода;
  • увеличивает временные эксплуатационные характеристики;
  • имеет намного меньший вес и размеры.

К недостаткам электронного балласта можно отнести высокие требования, предъявляемые к качеству комплектующих,a также точности выполнения монтажа, усложненность схемы подключения.

Как подключают люминесцентную лампу, у которой сгорели нити накала

Существуют схемы включения, которые позволяют пользоваться светильником даже в тех случаях, когда лампа не горит при использовании умножительного устройства.

Чтобы вернуть такую лампу к жизни достаточно включить в цепь перед стартером включают конденсатор мощностью в 4 Мкф.

Такое изменение возобновит свечение, но устранить мерцание по краям оно не сможет.

Существуют схемы для включения люминесцентных ламп, у которых вышли из строя нити накала, которые не только восстанавливают осветительный прибор, но и устраняют такой недостаток, как гудение электромагнитного дросселя.

Совет

Как включают люминесцентные лампы без стартера и с перегоревшей нитью накала можно узнать из видеоролика

Источник: https://www.expertporemontu.ru/shema-podklucheniya-luminescentnyh-lamp-444

Ссылка на основную публикацию
Adblock
detector