Обозначение пускателя на схеме – советы электрика

Контакторы и пускатели — условные обозначения и надписи. Расшифровка и технические характеристики

Контактор – это одна из разновидностей электромагнитного реле.

Он имеет в своей конструкции катушку, при подаче напряжения на которую, происходит втягивание сердечника, после чего собственно и замыкаются контакты.

Многие путают контакторы с пускателями. Чем же они отличаются между собой?

Контактор по сути, это одиночное устройство, предназначенное для замыкания и размыкания электрических цепей. А пускатель представляет собой некое комплексное устройство, выполняющее ту же функцию, но с дополнительными элементами в своей схеме.

Например, различные виды защит или пусковые кнопки.

Большой проблемы нет, в том что многие применяют эти термины по-другому.

Главное понимать функциональность каждого оборудования.

Ниже приведены расшифровки условных обозначений и наименований популярных марок пускателей и контакторов ПМЛ, КМЭ, ПАЕ, ПМА.

По ним можно узнать, что означают те или иные цифробуквенные обозначения и как они расшифровываются.

Получается, что только из одного названия можно понять:

  • какая у него функциональность
  • какие дополнительные возможности он в себе несет

Чтобы ознакомиться с каждым типом пускателя нажмите на соответствующую вкладку.

Однако помимо названия, очень много информации содержится на самом корпусе контактора.

Рассмотрим на примере двух изделий от IEK КМИ и Schneider Electric LC1D25 какие же надписи и обозначения наносят производители на корпуса, как они расшифровываются и что обозначают.

Начнем с контактора от Шнайдер Электрик. На боковой грани указывается максимально возможная подключаемая к контактору мощность в лошадиных силах (HP – horsepower). Зависит данная мощность от питающего напряжения.

В ряде стран, лошадиные силы до сих пор применяются, хотя и есть рекомендации международной организации по метрологии о том, чтобы лошадиную силу исключить из употребления.

Далее указываются общие рекомендации по выбору автоматических выключателей или предохранителей.

  • надпись CB – Circuit Breaker относится к автоматам

Обязательно прописывается максимальное рабочее напряжение (а.с. max).

Cont. current – это длительный номинальный ток при категории нагрузки АС1.

Если говорить упрощенно, то категория АС1 – это нагрузка типа утюг или обыкновенный нагреватель.

AWG 6-14 Cu – показывает сечение проводов, которые можно подключать к контактам.

Измерение идет в западных единицах. Для того, чтобы узнать аналог нашего сечения в мм2, потребуется воспользоваться таблицей перевода AWG в мм2.Torque 20lb.in – момент усилия, с которым допускается затягивать клеммы.

Более точные цифры в привычных единицах измерения, можно также найти в технических данных на сайте производителя, либо воспользоваться вот здесь специальной программой конвертером lb-in в Nm (ньютон-метры).

Lb-in расшифровывается как фунт на квадратный дюйм.

Обратите внимание

Качественные контакторы всегда имеют надписи о наличии сертификатов, которым соответствует данный механизм.

Ith-40А – условный тепловой ток в открытом исполнении. Проще говоря, это тот ток, который может через себя пропустить контактор при нормальных условиях окружающей среды.

Ui=690V – номинальное напряжение изоляции изделия.

IEC/EN 60947-4-1 – соответствие пускателя данному стандарту. ГОСТ Р50030.4.1-2012 – это наш модифицированный аналог этого стандарта.

Uimp=6kV – допустимое импульсное перенапряжение.

В отдельной табличке указываются возможные подключаемые к контактору мощности, в зависимости от питающего напряжения. 

Мощности прописываются уже в киловаттах. У некоторых может возникнуть вопрос, почему такая разница в зависимости от напряжения.

Объясняется это просто. По большому счету, контактору все равно на какое напряжение рассчитана нагрузка. Самое главное, это величина тока, протекающего через его контакты.
Например, у вас есть напряжение 100В и ток 10А. Нагрузка в этом случае будет 1кВт.

А если напряжение будет в 2 раза больше, т.е. 200В, то при подключении той же нагрузки в 1кВт, через изделие будет течь ток в 2 раза меньше I=5А.

Поэтому, чем ниже напряжение, тем меньшей мощности нагрузку можно подключить к контактору. При этом, всегда обращайте внимание, для какого типа нагрузки указаны данные.

Важно

Например в данной случае, мощности указаны для нагрузки AC3. Образец такой нагрузки – асинхронный двигатель.

JIS C8201-4-1 – это японский промышленный стандарт. Соответственно, здесь также прописывается возможные подключаемые к контактору мощности, в зависимости от питающего напряжения по данному стандарту. 

Почему прописывается такой большой и странный набор напряжений? Потому что в различных странах разные стандарты, которые и определяют уровни силовых напряжений.

Например, в Японии в обычной розетке 100 вольт. А для мощных нагрузок применяется уже 200В.

Переходим к надписям на лицевой панели пускателя=контактора.

А1 и А2 – это точки подключения катушки управления.

Сами клеммы маркируются двумя альтернативными способами:

  • числовая последовательность 1-2-3-4-5-6
  • буквенно цифровая. Сверху L1-L2-L3. Снизу T1-T2-T3.

Вспомогательные контакты маркируются в соответствии со стандартами. Есть один нюанс, о котором не все знают.

Первая цифра обозначения – это порядковый номер контакта. А вторая цифра – это функция контакта.

Например, сверху можно увидеть надписи 13-21. Снизу 14-22.

То есть, первые цифры 1-2 это порядковый номер контакта. Слева идет один вспомогательный контакт, справа второй.

А вторая цифра – это функция. Число 1-2 – это общий провод или часть нормально закрытого контакта цепи.

Число 3-4 это часть нормально открытого контакта. То есть по номерам, не раскручивая и не прозванивая механизм, не изучая его схему в паспорте, можно сразу понять, что 13-14 является нормально открытым контактом №1 (NO – normal open).

А 21-22 – нормально закрытый контакт №2 (NC – normal closed).

Все другие привычные нам электромагнитные реле, имеют такую же маркировку, облегчающую визуальное понимание функциональности устройства. Вот пример другого реле и обозначение его контактов.

Вам не нужно искать документацию на него, чтобы понять как здесь подключаться или какую функцию несет тот или иной винтовой зажим.

На корпусе также обязательно прописывается напряжение катушки, которая управляет пускателем.

Буква М7 (или другая) – это определение типа катушки в заказном номере.

Совет

Например, если у вас в контакторе марки LC1D25 сгорит катушка, вам достаточно будет при заказе указать напряжение и ее номер М7. Вы точно будете знать, что придет именно то изделие, и того размера, которое необходимо.

Еще один важный момент, на который стоит обратить внимание – это возможность использования разных типов проводов в клеммах. Если площадки будут медными, это означает, что применять алюминиевые провода недопустимо. 

Сечение и типы подключаемых проводов указываются в технической документации.

С контактором IEK все гораздо проще. Его маркировка построена практически по такому же принципу.

Цифро-буквенное обозначение рабочих клемм:

Двойная маркировка вспомогательных контактов: 13-14

  • первая группа (первые цифры 1-1)
  • с нормально открытым контактом (вторые цифры 3-4)

Для российского рынка может быть и сокращенное обозначение “НО” – нормально открытый.

Сбоку прописывается напряжение катушки 230В (50Гц). И другие технические параметры.

КМИ – 10910 – его заказной номер

АС-3 In=9А и АС1 In=25А – возможно подключаемая нагрузка, для различных категорий.

Также указываются мощности подключаемой нагрузки в зависимости от их напряжения питания. 

Может быть изображена даже условная схема контактора со всеми его контактами (рабочими и вспомогательными).

Внизу прописывается нормативный документ, которому соответствует данное изделие – ГОСТ Р50030.4.1

Источник: https://domikelectrica.ru/kontaktory-i-puskateli-uslovnye-oboznacheniya-i-nadpisi/

Условные обозначения на электрических схемах (ГОСТ)

Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Обратите внимание

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т.д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Графические обозначения на однолинейной схеме

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.).

Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е.

электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Графические обозначения на монтажной схеме

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления,  и т.д.).

На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.).

Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Графические обозначения на принципиальной схеме

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования.

По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.).

На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.  

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF.

Читайте также:  Как подключить датчик освещенности - советы электрика

Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM.

Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

Важно

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле.

Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта.

В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения.

Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение.

Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

Источник: http://aquagroup.ru/articles/uslovnye-oboznacheniya-na-elektricheskih-shemah-gost.html

Условные графические обозначения элементов электрических и электронных схем

Почти все УОС, все изделия радиоэлектроники и электротехники, изготавливаемые промышленными организациями и предприятиями, домашними мастерами, юными техниками и радиолюбителями, содержат в своем составе определенное количество разнообразных покупных ЭРИ и элементов, выпускаемых в основном отечественной промышленностью. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства. К ним можно отнести в первую очередь ППП, конденсаторы, резисторы, трансформаторы, дроссели, электрические соединители, аккумуляторы, ХИТ, переключатели, установочные изделия и некоторые другие виды ЭРЭ.

Применяемые покупные комплектующие или самостоятельно изготавливаемые ЭРЭ обязательно находят свое отражение на принципиальных и монтажных электрических схемах устройств, в чертежах и другой ТД, которые выполняются в соответствии с требованиями стандартов ЕСКД.

Особое внимание уделяется принципиальным электрическим схемам, которые определяют не только основные электрические параметры, но и все входящие в устройства элементы и электрические связи между ними.

Для понимания и чтения принципиальных электрических схем необходимо тщательно ознакомиться с входящими в них элементами и комплектующими изделиями, точно знать область применения и принцип действия рассматриваемого устройства.

Совет

Как правило, сведения о применяемых ЭРЭ указываются в справочниках и спецификации — перечне этих элементов.

Связь перечня комплектующих ЭРЭ с их условными графическими обозначениями осуществляется через позиционные обозначения.

Для построения условных графических обозначений ЭРЭ используются стандартизованные геометрические символы, каждый из которых применяют отдельно или в сочетании с другими. При этом смысл каждого геометрического образа в условном обозначении во многих случаях зависит от того, в сочетании с каким другим геометрическим символом он применяется.

Стандартизованные и наиболее часто применяемые условные графические обозначения ЭРЭ в принципиальных электрических схемах приведены на рис.1. Эти обозначения касаются всех комплектующих элементов схем, включая ЭРЭ, проводники и соединения между ними. И здесь важнейшее значение приобретает условие правильного обозначения однотипных комплектующих ЭРЭ и изделий.

Для этой цели применяются позиционные обозначения, обязательной частью которых является буквенное обозначение вида элемента, типа его конструкции и цифровое обозначение номера ЭРЭ. На схемах используется также дополнительная часть обозначения позиции ЭРЭ, указывающая функцию элемента, в виде буквы. Основные виды буквенных обозначений элементов схем приведены в табл.

1.

Обозначения на чертежах и схемах элементов общего применения относятся к квалификационным, устанавливающим род тока и напряжения, вид соединения, способы регулирования, форму импульса, вид модуляции, электрические связи, направление передачи тока, сигнала, потока энергии и др.

В настоящее время у населения и в торговой сети находится в эксплуатации значительное количество разнообразных электронных приборов и устройств, радио- и телевизионной аппаратуры, которые изготавливаются зарубежными фирмами и различными акционерными обществами. В магазинах можно приобрести различные типы ЭРИ и ЭРЭ с иностранными обозначениями. В табл. 1. 2 приведены сведения о наиболее часто встречающихся ЭРЭ зарубежных стран с соответствующими обозначениями и их аналоги отечественного производства.

Эти сведения впервые публикуются в таком объеме.

Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации

1— транзистор структуры р- n-р в корпусе, общее обозначение;

2— транзистор структуры п-р-п в корпусе, общее обозначение,

3 — транзистор полевой с p-n-переходом и п каналом,

4 — транзистор полевой с p-n-переходом и р каналом,

5 — транзистор однопереходный с базой п типа, б1, б2 — выводы базы, э — вывод эмиттера,

6 — фотодиод,

7 — диод выпрямительный,

8 — стабилитрон (диод лавинный выпрямительный) односторонний,

9 — диод тепло-электрический,

10 — тиристор диодный, стираемый в обратном направлении;

11 — стабилитрон (диодолавинный выпрямительный) с двусторонней
проводимостью,

12 — тиристор триодный.

13 — фоторезистор,

14 — переменный резистор, реостат, общее обозначение,

15 — переменный резистор,

16 — переменный резистор с отводами,

17 — построечный резистор-потенциометр;

18 — терморезистор с положительным температурным коэффициентом прямого нагрева (подогрева),

19 — варистор,

20 — конденсатор постоянной емкости, общее обозначение,

21 — конденсатор постоянной емкости поляризованный;

22 — конденсатор оксидный поляризованный электролитический, общее обозначение;

23 — резистор постоянный, общее обозначение;

24 — резистор постоянный с номинальной мощностью 0, 05 Вт;

25 — резистор постоянный с номинальной мощностью 0, 125 Вт,

26 — резистор постоянный с номинальной мощностью 0, 25 Вт,

27 — резистор постоянный с номинальной мощностью 0, 5 Вт,

28 — резистор постоянный с номинальной мощностью 1 Вт,

29 — резистор постоянный с номинальной мощностью рассеяния 2 Вт,

30 — резистор постоянный с номинальной мощностью рассеяния 5 Вт;

31 — резистор постоянный с одним симметричным дополнительным отводом;

32 — резистор постоянный с одним несимметричным дополнительным отводом;

Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации

33 — конденсатор оксидный неполяризованный,

34 — конденсатор проходной (дуга обозначает корпус, внешний элекрод),

35 — конденсатор переменной емкости (стрелка обозначает ротор);

36 — конденсатор подстроечный, общее обозначение

37 — варикап.

38 — конденсатор помехоподавляющий;

39 — светодиод,

40 — туннельный диод;

41 — лампа накаливания осветительная и сигнальная

42 — звонок электрический

43 — элемент гальванический или аккумуляторный;

44 — линия электрической связи с одним ответвлением;

45 — линия электрической связи с двумя ответвлениями;

46 — группа проводов, подключенных к одной точке электрическою соединения. Два провода;

47 — четыре провода, подключенных к одной точке электрическою соединения;

48 — батарея из гальванических элементов или батарея аккумуляторная;

49 — кабель коаксиальный. Экран соединен с корпусом;

50 — обмотка трансформатора, автотрансформатора, дросселя, магнитного усилителя;

51 — рабочая обмотка магнитного усилителя;

52 — управляющая обмотка магнитного усилителя;

53 — трансформатор без сердечника (магнитопровода) с постоянной связью (точками обозначены начала обмоток);

54 — трансформатор с магнитодиэлектрическим сердечником;

55 — катушка индуктивности, дроссель без магнитопровода;

56 — трансформатор однофазный с ферромагнитным магнитопроводом и экраном между обмотками;

Обратите внимание

57 — трансформатор однофазный трехобмоточный с ферромагнитным магнитопроводом с отводом во вторичной обмотке;

58 — автотрансформатор однофазный с регулированием напряжения;

59 — предохранитель;

60 — предохранитель выключатель;

б1 — предохранитель-разъединитель;

62 — соединение контактное разъемное;

63 — усилитель (направление передачи сигнала указывает вершина треугольника на горизонтальной линии связи);

64 — штырь разъемного контактного соединения;

Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации

65 — гнездо разъемною контактного соединения,

66 — контакт разборного соединения например с помощью зажима

67 — контакт неразборного соединения, например осуществленного пайкой

68 — выключатель кнопочный однополюсный нажимной с Замыкающим контактом
самовозвратом

69 — контакт коммутационного устройства размыкающий, общее обозначение

70 — контакт коммутационного устройства (выключателя, реле) замыкающий, общее обозначение. Выключатель однополюсный.

71 — контакт коммутационного устройства переключающий, общее обозначение. Однополюсный переключатель на два направления.

72— контакт переключающий трехпозиционный с нейтральным положением

73 — контакт замыкающий без самовозврата

74 — выключатель кнопочный нажимной с размыкающим контактом

75 — выключатель кнопочный вытяжной с замыкающим контактом

76 — выключатель кнопочный нажимной с возвратом кнопки,

77 — выключатель кноночный вытяжной с размыкающим контактом

78 — выключатель кнопочный нажимной с возвратом посредством вторичного нажатия кнопки,

79 — реле электрическое с замыкающим размыкающим и переключающим контактами,

80 — реле поляризованное на одно направление тока в обмотке с нейтральным положением

81 — реле поляризованное на оба направления тока в обмотке с нейтральным положением

82 — реле электротепловое без самовозврата, с возвратом посредством вторичного нажатия кнопки,

83- разъемное однополюсное соединение

84 — гнездо пятипроводного контактного разъемного соединения,

85 штырь контактного разъемного коаксиального соединения

86 — гнездо контактною соединения

87 — штырь четырехпроводного соединения,

88 гнездо четырехпроводного соединения

89 — перемычка коммутационная размыкающая цепь

Условные обозначения элементов схем

Стандартные условные графические и буквенные обозначения элементов электрических схем

Е Источник ЭДС
R Резистор, активное сопротивление
L Индуктивность, катушка
C Емкость, конденсатор
G Генератор переменного тока, питающая схема
M Электродвигатель переменного тока
T Трансформатор
Q Силовой выключатель (на напряжение свыше 1кВ)
QW Выключатель нагрузки
QS Разъединитель
F Предохранитель
Сборные шины с присоединениями
Соединение разъемное
QA Автоматический выключатель на напряжение до 1 кВ
КМ Контактор, магнитный пускатель
S Рубильник
ТА Трансформатор тока
ТА Трансформатор тока нулевой последовательности
TV Трехфазный или три однофазных трансформатора напряжения
F Разрядник
К Реле
КА, KV, KT, KL Обмотка реле
КА, KV, KT, KL Контакт замыкающий реле
КА, KV, KT, KL Контакт размыкающий реле
КТ Контакт реле времени, замыкающий с выдержкой на срабатывание
КТ Контакт реле времени, замыкающий с выдержкой на возврат
Прибор измерительный показывающий
Прибор измерительный регистрирующий
Амперметр
Вольтметр
Ваттметр
Варметр

Использованы материалы сайтов: http://www.cxem.net и http://www.baurum.ru

Источник: http://www.electricdom.ru/article5.htm

Контакторы, блоки пускателей, реле

Трафарет Visio Контакторы, блоки пускателей, реле…

 Трансформация условных обозначений возможна через контекстное меню фигуры Visio путем включения-отключения  функциональных символов и их комбинации и изменении типа контактов в таблице данных фигуры:

Контактор (пускатель).

Базовые символы условных обозначений:

Контактор однополюсный.
Контактор двухполюсный.
Контактор трехполюсный.
Контактор четырехполюсный.

   Для любого условного обозначения пускателя, через контекстное меню фигуры, можно показать или скрыть символы функции:

  • контактора,
  • автоматического отключения,
  • полупроводниковый
  • механической связи.

   Например, для обозначения 3-полюсного варианта пускателя:

Пускатель трехполюсный.
Контактор трехполюсный полупроводниковый.
Контактор трехполюсный полупроводниковый с автоматическим отключением.
Пускатель трехполюсный с автоматическим отключением.

 В таблице данных фигуры, любой из контактов контактора (пускателя), можно изменить на нормально открытый или нормально закрытый.

   Пример некоторых комбинаций для 4-полюсного варианта:

Примеры условных обозначений контактора (пускателя) с различными типами контактов.

Изменение условного обозначения пускателя (контактора) – видео:

Читайте также:  Обозначение автомата на схеме - советы электрика

Контактор (пускатель) реверсивный.

Контактор реверсивный двухполюсный.
Контактор реверсивный трехполюсный.
Контактор реверсивный трехполюсный с функцией автоматического отключения.

 Для любого из условных обозначений реверсивного пускателя, через контекстное меню фигуры, можно показать или скрыть символы функции:

  • контактора,
  • автоматического отключения,
  • полупроводниковый
  • механической связи.

 Пример некоторых комбинаций обозначения для 3-полюсного варианта обозначения:

Пускатель реверсивный трехполюсный с механической блокировкой.
Контактор реверсивный трехполюсный полупроводниковый.
Контактор реверсивный трехполюсный с функцией автоматического отключения.

Изменение условного обозначения пускателя (контактора) реверсивного – видео:

Контактор (пускатель) треугольник – звезда.

Условное обозначение контактора треугольник – звезда.

 Для условного обозначения контактора треугольник – звезда, через контекстное меню фигуры, можно показать или скрыть символы функции:

  • контактора,
  • автоматического отключения,
  • полупроводниковый
  • механической связи.

Примеры условных обозначений контактора (пускателя) треугольник – звезда.

Блоки пускателей.

   Через контекстное меню фигуры блока пускателя, можно переключить функции:

  • контакторный,
  • тиристорный,
  • с автотрансформатором,
  • шаговый
  • общее обозначение.

Блок пускателей контакторный.
 Блок пускателей тиристорный.
 Блок пускателей с автотрансформатором.
Блок пускателей шаговый.
Блок пускателей (общее обозначение).

Для любого из условных обозначений блока пускателей, через контекстное меню фигуры, можно показать или скрыть символы функции: регулируемый и реверсивный, а так же изменить расстояние между выводами, например:

Блок пускателей с автотрансформатором регулируемый.

Блок пускателей контакторный реверсивный.

Блок пускателей тиристорный регулируемый реверсивный.

Изменение условных обозначений блоков пускателей – видео:

Блок пускателей звезда – треугольник.

Условное обозначение блока пускателей звезда – треугольник.

Реле перегрузки.

С помощью переключателя в контекстном меню фигуры условного обозначения реле, можно выбрать один из вариантов условных обозначений:

  • реле с расцепителем максимального тока;

Реле с расцепителем максимального тока однополюсное.
Реле с расцепителем максимального тока двухполюсное.
Реле с расцепителем максимального тока трехполюсное.
Реле с расцепителем максимального тока четырехполюсное.

  • реле с тепловым расцепителем;

Реле с тепловым расцепителем однополюсное.
Реле с тепловым расцепителем двухполюсное.
Реле с тепловым расцепителем трехполюсное.
Реле с тепловым расцепителем четырехполюсное.

  •  реле с тепловым расцепителем и расцепителем максимального тока

Реле с тепловым расцепителем и расцепителем максимального тока однополюсное.
Реле с тепловым расцепителем и расцепителем максимального тока двухполюсное.
Реле с тепловым расцепителем и расцепителем максимального тока трехполюсное.
Реле с тепловым расцепителем и расцепителем максимального тока четырехполюсное.

Изменение символа условного обозначения реле перегрузки –  видео:

Источник: https://td-visio.ru/biblioteki-visio/elektroavtomatika-pro/opisanie-i-rukovodstvo/trafarety-ugo/kontaktory-bloki-puskatelej-rele.html

Схемы управления электромагнитными пускателями (контакторами)

Электромагнитные пускатели и контакторы незаменимы в цепях управления силовой нагрузкой. А чтобы правильно применять эти устройства нужно хорошо знать, как они работают и уметь чертить нужные схемы управления под свой конкретный случай.

Электромагнитные контакторы находят даже применение в цепях управления освещением.  Сегодня рассмотрим схемы управления реверсивным и нереверсивным пускателем или контактором. Я даже не знаю, как их можно различать

Для начала хочу сказать несколько слов из чего состоит пускатель. У пускателя можно выделить 3 основных элемента:

  • силовые контакты (как правило их 3) – предназначены для коммутации силовой нагрузки, номинальный ток пускателя относится именно к контактам;
  • электромагнитная катушка – предназначена для управления пускателем, в основном рассчитана на 220 или 380В;
  • дополнительный контакт – предназначен для построения схемы управления или сигнализации о состоянии пускателя (контактора), в пускателях на большие номинальные токи их может быть несколько (замыкающие, размыкающие).

Все эти 3 элемента будут участвовать в схемах управления.

1 Схема управления нереверсивным пускателем (контактором).

Данная схема встречается очень часто. К примеру, в щите устанавливаем пускатель  с тепловым реле для управления электродвигателем, а кнопки управления выводим в нужное нам место. На рисунке ниже представлена схема управления нереверсивным пускателем с катушкой управления на 380В.

Схема управления нереверсивным пускателем (контактором)

При нажатии на кнопку «Пуск» через катушку проходит электрический ток и электромагнит притягивает контакты (силовые и дополнительные). В это время контакт 97-98 замыкается и через него постоянно проходит ток для удержания электромагнита катушки.

При нажатии на кнопку «Стоп» цепь управления катушки разрывается и электромагнит отпускает контакты, которые под действие пружины возвращают их в исходное состояние. Кнопки «Пуск» и «Стоп» без фиксации. В случае перегрузки контакт КК также разрывает цепь катушки.

До кнопочного поста достаточно проложить трехжильный кабель.

Важно

2 Схема блокировки двух устройств при помощи контакторов.

Следующая схема применима в том случае, если необходимо выполнить блокировку технологического оборудования №1 пока не включено оборудование №2. Например, зарядное устройство и приточная вентиляция. Включаем вентилятор и только после этого сможем включить зарядное устройство.

Схема блокировки двух устройств при помощи контакторов

Здесь использована предыдущая схема, к которой добавлен вспомогательный дополнительный контакт (приставка контактная, 1з). На линии питания нашего оборудования №1 (в нашем случае это зарядное устройство) устанавливаем контактор. При нажатии кнопки «Пуск» включается вентилятор, контакт 23-24 замыкается и включается контактор на линии №2.

3 Схема управления реверсивным пускателем (контактором). Механическая блокировка.

Реверсивные пускатели применяют для управления задвижками либо для выполнения реверса электродвигателя. Суть в том, что если фазу L1 и L3 (а и b) поменять местами, то двигатель начнет вращаться в противоположную сторону.

Реверсивный пускатель можно собрать из двух обычных пускателей. Главное чтобы была выполнена блокировка. Схема реализации реверсивной схемы на двух контакторах с использованием блокировочного устройства представлена ниже.

Схема управления нереверсивным пускателем (контактором). Механическая блокировка

Блокировочное устройство предназначено для исключения одновременного включения двух контакторов.

Блокировочное устройство двух контакторов

При нажатии на кнопку, к примеру у нас задвижка, «Открытие» — первый контактор включается (двигатель вращается в одну сторону).

Чтобы задвижку перевести в закрытое состояние должны нажать «Стоп», первый контактор отключится, а затем нажать кнопку «Закрытие» — второй контактор включится. Блокировочное устройство не даст нам одновременно включить два контактора.

В случае задвижки данная схема не очень верна, т.к. в схеме не показаны конечные выключатели (данную тему рассмотрю в другой раз).

4 Схема управления реверсивным пускателем (контактором). Электрическая блокировка.

Совет

Сейчас выполним те же функции только применим электрическую блокировку. Для этого к каждому контактору доставим дополнительно по приставке контактной с размыкающим контактом. Дополнительный размыкающий контакт первого контактора ставим последовательно с катушкой управления второго пускателя, аналогично и со вторым контактором.

Схема управления нереверсивным пускателем (контактором). Электрическая блокировка

При включения одного контактора, размыкающий контакт не дает включиться второму контактору.

При использовании пускателей и контакторов с катушками на 220В схемы практически не меняются. Вместо второй фазы используется N.

Итак, я рассмотрел основные схемы управления нереверсивными и реверсивными пускателями (контакторами), а теперь у вас есть уникальная возможность покритиковать мои схемы

Источник: http://220blog.ru/pro-sxemy/sxemy-upravleniya-elektromagnitnymi-puskatelyami-kontaktorami.html

Обозначения магнитных пускателей

В моей работе часто приходится сталкиваться с магнитными пускателями.

Как-то мне попалась вот такая справочная информация, которая расшифровывает обозначения магнитных пускателей и которая мне очень помогает в работе.

Пускатели электромагнитные серий  ПМА, ПМЛ, ПМЕ предназначены для применения в стационарных установках для дистанционного пуска непосредственным подключением к цепи, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором переменного напряжения 660 В с частотой 50 и 60 Гц.

При наличии трехполюсных тепловых реле серий РТТ и РТЛ пускатели осуществляют защиту управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз.

Пускатели пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки помехоподавляющим устройством или при тиристорном управлении.

Структура условного обозначения магнитных пускателей:

ПМЛ – X1 Х2 Х3  Х4 X5 Х6 Х7 Х8 Х9

X1 – кодирует величину пускателя по номинальному току   1-0А;  2-            25А;3-40А; 4-63А;

Х2 – кодирует характер работы электродвигателя и наличие                              теплового реле 1 и 2 – нереверсивный; 4 и 5 -реверсивный ; 1 и          5 – без реле; 2 и 4-с реле;

Х3 – кодирует исполнение пуска пускателя по степени защиты и                 наличию   кнопок   0,1- без кнопок ; 2 – с кнопками «Пуск» и              «Стоп»; 3-с кнопками «Пуск» и  «Стоп» и сигнальной лампой; 4 –       без кнопок; 5-с кнопками «Пуск» и «Стоп»; 6 – IPZO; 0 – без                 корпуса; 1 …6 – в корпусе;

 Х4– кодирует количество контактных групп  0 -1 замыкающий (на             10-25А), 1з+1р(на 40-63А); 0,1- 1р( на 10-25А); 2 – 1з (на 10-25А         и 40 – 63А); 5 -1 з ( на 10-25А) – постоянный ток; 6 -1 р (на  10-          25А) – постоянный ток;

X5 – кодирует сейсмостойкость;

Х6 – кодирует исполнение пускателей с креплением на стандартные           рейки;

Х7– и Х8– кодируют климатическое исполнение;<\p>

Х9 – кодирует исполнение по износостойкости «А,Б и В»

ПМА- X1 Х2 Х3  Х4 X5 Х6 Х7

X1– кодирует величину пускателя 0-6,ЗА; 1 – 10А; 2 – 25А; 3 40А; 4           80А-63А; 5-100А; 6 -160А;

Х2– кодирует характер работы электродвигателя  и наличия                        теплового реле 1 -без реле, нереверсивный; 2- с реле,                            нереверсивный; 3- без реле,  реверсивный с электрической  и            механической   блокировками;  4 – с реле, реверсивный с                     электрической и механической блокировками; 5 – без реле,                 реверсивный с электрическими блокировками  

 Х3– кодирует исполнение пускателей по степени защиты и наличия         кнопок  управления и сигнальной лампы  0 -без корпуса; 1 – в            корпусе без кнопок; 2 – в корпусе без кнопок; 3-в корпусе с                  кнопками управления и сигнальной лампой ; 4-в корпусе с                  кнопками управления  и сигнальной лампой; 5 – в корпусе с                кнопками  управления без сигнальной лампы; 6- в корпусе с                 кнопками управления без сигнальной лампы; 7- в корпусе с                кнопками управления без сигнальной лампы;

Читайте также:  Ремонт коллекторных электродвигателей - советы электрика

Х4– кодирует количество контактных групп 0-1з; 1-1з+2р; 2-1з+4р; 3       – 5з; 4 – 4з+2р; 5 – 2з; 6 – Зз; 7-2з+1р; 8-1з+2р;

X5 – кодирует вид климатического исполнения (У,УХЛ, Т по ГОСТ          15 150- 69);

Х6 – кодирует группы категорий размещения 2,3,4 по ГОСТ 15150-             69;<\p>

Х7 – кодирует исполнение по износостойкости А,Б и В.

ПМЕ- X1 Х2 Х3 

Х1 –кодирует величину 0-нулевая- до 5А; 1-первая –до 10А; 2-                  вторая-до 25А; 3-третья-до 40А; 4-  четвертая-до 63А; 5 -пятая –          до 100А; 6 – шестая – до 160А;

Х2-кодирует исполнение 1 – открытое с четырьмя замыкающимися;        2-защищенное с 43; 3 – пылеводонепроницаемое с 43; 4- открытое      с 43 и двумя размыкающимися; (2Р) блок контактами; 5                         защищенное с 43 +  2Р;   6- пылеводонепроницаемое с 43+2Р; 7 –       открытое с 43+2Р; 8- защищенное с 43 +4Р; 9                                        пылеводонепроницаемое с 43+4Р;

Х3 – кодирует характер работ электродвигателя и наличие тепловых           реле 1 – нереверсивный без теплового ТеР; 2 – нереверсивный с        ТеР; 3 -реверсивный без ТеР; 4 – реверсивный с ТеР.

Пускатели магнитные ПМ12-123456   789

1,2, 3-я обозначение номинального тока

       004 – 4А; 016 – 16А ; 025 – 25А; 040 – 40А; 063 – 63А: 100 – 100А;         160 – 160А;

4 -я по типу работы электродвигателя и наличию теплового реле

       1 -нереверсивный без теплового реле

       2 -нереверсивынй с тепловым реле

       5 -реверсивный без теплового реле с механической блокировкой

       6 -реверсивный с тепловым реле с механической блокировкой

5-я исполнение по степени защиты и наличию кнопок:

       0 – без корпуса,

       1 – в корпусе без кнопок

       2 – в корпусе с кнопками «Пуск» и «Стоп»

       3 – в корпусе с кнопками «Пуск» и «Стоп»

       4-в корпусе без кнопок

         5-степень защиты1РГО

6-я исполнении пускателя по числу контактов

7-я климатическое испорче (ие по ГОСТ 15150-69

8-я категория размещения по ГОСТ 15 150-69

9-я исполнение по износостойкости А, Б и В

Схема подключения магнитного пускателя рассмотрена на этой страничке.

Нет похожих статей.

Источник: http://elekkom56.ru/reference-information/oboznacheniya-magnitnyx-puskatelej.html

Электрическая схема пускателя магнитного, самый простой вариант электросхемы

Тема: самый простой вариант электрической схемы пускателя (магнитный)

Это простейшая схема пускателя (упрощенный вариант), которая лежит в основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко, как в промышленности, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни странно, но есть и такие люди).

Хоть Вы, возможно, конечно знаете принцип её работы, но для освежения памяти или для новичков все же опишу вкратце эту работу. И так, вся схема кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке или в специальной коробке (ПМЛ).

Кнопки ПУСКА и СТОПА, могут находится как на передней стороне этого щитка, так в не его (монтируются на месте, где удобно управлять работой), а может быть и там и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

Обратите внимание

А теперь о принципе работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя (ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3.

Для срабатывания ПМ, необходимо подать на его обмотку напряжение (кстати, величина его зависит от самой катушки, то есть, на какое именно напряжение она рассчитана. Это так же зависит от условий и места работы оборудования.

Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, поскольку берётся с одной из имеющихся фаз и нуля).

Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт самоподхвата ПМ4 (магнитного пускателя).

С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле.

Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска, продолжать работу и не отключить магнитный пускатель (называется самоподхватом).

Для остановки электродвигателя, требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до следующего запуска ПУСКа.

Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузки электродвигателя, соответственно повышается ток, и двигатель резко начинает  нагреваться, вплоть до выхода из строя.

Важно

Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП.

Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузки в оборудовании, на котором работает электродвигатель.

Хотя и не редко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д. Думаю для тех, кто этого не знал, данная статья, электрическая схема магнитного пускателя, упрощенный вариант, была весьма полезна и однажды не раз пригодится в жизни. Ну а пока на этом всё.

P.S. Данная принципиальная электрическая схема магнитного пускателя является наболее простым вариантом, который лежит в основе большинства рабочих схем в сфере электрики. Хорошо понимая выше описаный принцип работы этой схемы пускателя Вы будете в состоянии разобраться и с другими, более сложными, вариантами схем.

Источник: https://electrohobby.ru/shema-puskat-urosch-variant.html

Пускатель пм-12. Устройство

Пускатель электромагнитный ПМ 12 для чего он предназначен?

А необходим он главным образом в стационарных электроустановках для дистанционного пуска, остановки и реверсирования трехфазных ассинхронных движков естественно с короткозамкнутым ротором и при напряжении не выше 660 Вольт.

Частота сети- 50 и 60 Гц.

Предлагаю посмотреть как я разбирал попавший мне в руки подопытный экземпляр)))

Разбирался ПМ 12 гораздо легче и так сказать предсказуемее чем контактор КТИ.

Весь процесс разборки заснял на фото.

Технические характеристики пускателя ПМ 12:

Параметр Значение
Температура окружающей среды от -40 до +55°С
Относительная влажность до 100% при температуре 35°С
Механическая износостойкость установленных на пускатель контактных приставок не менее 20х106 циклов
Номинальное напряжение по изоляции 660 В
Номинальный ток контактов вспомогательной цепи 10 А
Номинальное напряжение контактов вспомогательной цепи до 660 В переменного тока
Номинальное напряжение втягивающей катушки, частоты 50 Гц 24, 36, 40, 48, 110, 127, 220, 230, 240, 380, 400, 415, 440, 500, 660 В
Номинальное напряжение втягивающей катушки, частоты 60 Гц 24, 36, 48, 110, 115, 220, 230, 240, 380

Я разбирал пускатель ПМ 12-063151 УХЛ4 В.

Маркировка или условное обозначение пускателя обозначает следующее:

ПМ 12 это обозначение серии, то есть корпус одинаковый, отличается только габаритами- чем больше номинальный ток силовых контактов- тем больше корпус.

063- номинальный ток силовых контактов пускателя (63 ампера)

1– обозначает что пускатель без теплового реле и нереверсивный

5– степень защиты пускателя IP20

1– исполнение пускателя по блок-контактам, в данном случае обозначает 2 нормально-замкнутых и 2 нормально-разомкнутых

УХЛ– климатическое исполнение пускателя

4– категория размещения пускателя

В– исполнение по износостойкости

Катушка у пускателя на 220 Вольт.

Разбирать начал со снятия крышки, закрывающей силовые контакты сверху. Крышка просто фиксируется в корпусе защелками.

Отодвигаю защелки что бы они вышли из зацепления из специальных пазов в корпусе пускателя и просто поднимаю крышку вверх.

Все, крышка снята, сразу становятся видны силовые контакты.

Так же как и на пускателях серии ПМЛ, ПМЕ что бы располовинить корпус надо вытащить подвижные силовые контакты из траверсы.

В траверсе они зафиксированы пластиковыми упорами, которые в свою очередь распираются упорными пружинами.

Я наловчился и вытаскивал контакты даже без инструмента, а сначала получалось только с помощью отвертки.

Приподнимал отверткой фиксаторы и вытаскивал контакты.

После того как силовые контакты вытащены из траверсы, открутил три болта и корпус разделился на две половины.

Верхнюю часть аккуратно снял вверх с траверсы.

Сама траверса крепится с боков к корпусу блок-контактов с помощью штифтов.

Что бы вытащить траверсу надо с одного бока открутить корпус блок-контактов, а это два болтика-троечки.

Совет

В траверсе с помощью металлического штырька закреплена подвижная часть электромагнита.

Так же с краев снизу в траверсу в специальные отливы упираются две возвратные пружины.

Эти пружины возвращают силовые контакты в исходное положение после отключения пускателя- размыкают их.

Вслед за силовыми контактами перекидываются и блок-контакты(вспомогательные), так как траверса жестко соединяется штифтами с планкой, на которой крепятся блок-контакты.

Катушка у пускателя ПМ 12 меняется тоже очень удобно без разборки корпуса, в отличии от серии ПМЛ и ПМЕ .

Достаточно со стороны выводов катушки открутить два болтика и катушка вместе с неподвижной частью электромагнита вытаскивается из корпуса.

Очень удобно при обслуживании пускателя- можно не разбирая корпус и не трогая силовых контактов вытащить катушку для замены.

Так же можно и очистить торцовую часть электромагнита от грязи и всякого налета- если этого не делать то пускатель начинает работать громче и “гудеть”.

Раскидал я пускатель довольно быстро, сборка то же не доставила никаких проблем.

Даже запчастей лишних никаких не осталось)))

Более подробно смотрите на фото- специально для вас запечатлел процесс разборки.

 Узнайте первым о новых материалах сайта!

Просто заполни форму:

Источник: http://ceshka.ru/novosti/pm-12-ustroystvo

Ссылка на основную публикацию
Adblock
detector