Нулевой провод в трехфазной сети – советы электрика

Нулевой провод: роль и обозначение, классификация, отличие от фазного

Если кто-либо сталкивался с электричеством, то непременно слышал о таких понятиях, как фазный и нулевой провод. Их основной отличительной чертой является назначение.

Провод, соединяющий нулевую точку фаз генератора, трансформатора с нулевой точкой нагрузки, называют нулевым или нейтральным.

Его называют так потому, что в некоторых случаях ток в нем равен нулю, и нейтральным исходя из того, что он одинаково принадлежит любой из фаз.

Фазный провод (фаза) предназначен для подачи электричества к потребителю.

Обратите внимание

Назначение нулевого провода (нейтрального или нуля) состоит в выравнивании асимметрии напряжений при разном значении нагрузки в фазах.

Он присоединён к нулевым точкам источника и потребителя при их соединении в «звезду».

Присоединение нейтрального провода (трехфазная четырехпроводная сеть) является возможным только в том случае, когда источник и нагрузка соединены в «звезду».

При соединении в «треугольник» необходимость в нём отпадает, так как линейное и фазное напряжения в фазах одинаковы.

Чтобы понять разницу между линейным и фазным напряжением, необходимо понимать, что в трехфазной трехпроводной цепи линейное (напряжение между двумя фазными проводами) в основном составляет 380 В, а фазное — напряжение между фазой и нулем — в √3 раз меньше приблизительно 220 В.

Нейтральный провод заслужил свое название тем, что при работе устройств ток в нём, при одинаковой нагрузке трёх фаз, равен нулю. Сопротивление его невелико. Поэтому при перегрузке одной или нескольких фаз, ток в нем быстро возрастет. В схеме освещения его наличие является обязательным условием. В ином случае не гарантируется равномерность освещения.

В зависимости от роли, нулевой провод может быть рабочим, защитным, совмещенным.

Защитный обозначается РЕ. Он предназначен для безопасности в случае попадания потенциала на корпус электроприбора. В нормальном режиме он обесточен, а при поломке является проводником, который отведет от электроприбора опасный потенциал в землю. Цвет этой жилы желто-зеленый.

В некоторых системах нулевой провод совмещен с защитным. В таком случае маркировка будет обозначена как PEN и окраска этой жилы будет синей с полосками на концах желто-зеленого цвета.

Особенности нейтрального провода

Нулевой провод предотвращает нежелательные ситуации при аварийных режимах работы. Без его наличия в случае фазного короткого замыкания двух фаз напряжение в третьей фазе мгновенно возрастет в √3 раз. Это губительно скажется на оборудовании, которое питает этот источник. В случае наличия нуля в такой ситуации, напряжение не изменится.

При обрыве одной из фаз в трехфазной трехпроводной системе (без нуля), напряжение на двух оставшихся фазах уменьшится. Они окажутся соединенными последовательно, а при этом виде соединения напряжение распределяется между потребителями в зависимости от их сопротивления.

При обрыве одной из фаз в трехфазной четырёхпроводной системе, напряжение в двух оставшихся фазах своего значения не изменит.

Так как большую часть времени работы электроустановок ток в этом проводе либо равен нулю, либо незначителен, нет смысла изготавливать его такого же сечения, как и сечение фазных.

Важно

Чаще всего, из соображений экономии, он имеет меньшее сечение жилы, нежели сечение жил фаз в одной электроустановке.

Если защитный провод не совмещен с нулевым, его сечение выполняют вдвое меньше, нежели, у фазного провода.

Классификация нейтралей линий электропередач

Назначение линий электропередач весьма разнообразно. А также разнообразна аппаратура для их защиты от утечек и коротких замыканий. В связи с этим нейтрали классифицируются на три вида:

  • глухозаземленная;
  • изолированная;
  • эффективно заземлённая.

Если линия электропередач напряжением от 0,38 кВ до 35 кВ имеет небольшую длину, а количество подключенных потребителей велико, то применяется глухозаземленная нейтраль. Потребители трехфазной нагрузки получают питание, благодаря трем фазам и нулю, а однофазной — одной из фаз и нулю.

При средней протяженности линий электропередач напряжением от 2 кВ до 35 кВ и небольшим количеством потребителей, подключенных к данной линии, находят применение изолированные нейтрали. Они широко используются для подключений трансформаторных подстанций в населённых пунктах, а также мощного электрооборудования в промышленности.

Реакция электроприборов на обрыв нуля

Если общий нейтральный провод в многоэтажном доме оборвется, то потребители ощутят это в результате скачка напряжения в их электроприборах.

Основные факторы, которые могут привести к обесточиванию общего нуля:

  • аварийная ситуация на подстанции;
  • устаревшая проводка;
  • монтаж проводки выполнялся не совсем качественно.

Та фаза, к которой подключено большее количество потребителей многоквартирного дома, будет перегружена. Напряжение в ней уменьшится. В той фазе, к которой потребителей подключено меньше всего, напряжение резко возрастет.

Это негативно скажется на приборах — снижение напряжения вызовет их неэффективную работу, а рост напряжения может повлечь за собой выход из строя тех, которые были подключены в данный момент.

Чтобы обезопасить себя от такой ситуации, необходимо установить в щиток, питающий отдельную квартиру, индивидуальный ограничитель перенапряжения.

Как только напряжение начнет превышать допустимые значения, ограничитель быстро отключит питание.

Если произойдет обрыв нуля непосредственно в квартире, то электричество пропадет полностью, но вместе с тем фаза не отключится. Опасность заключается в том, что она может перейти как раз на провод нулевой. И если какой-либо электроприбор был предварительно заземлён на него, корпус этого электроприбора будет под напряжением, а проще говоря, начнет «биться током».

Главными факторами, которые способствуют обрыву нуля непосредственно в квартире можно назвать:

  • ненадежность присоединения контактов;
  • неправильно выбранное сечение проводника;
  • устаревшая проводка.

Эти факторы приводят к чрезмерному нагреванию проводника. Из-за повышенной температуры окисляется место присоединения контактов, перегреваются жилы проводов. А это, в свою очередь, может привести к пожару.

Источник: https://220v.guru/elementy-elektriki/provodka/rol-i-naznachenie-nulevogo-provoda.html

Обрыв нуля в трехфазной и однофазной сети

Даже те, кто не имеет электротехнического образования, наверняка слышали о такой аварийной ситуации, как перекос фаз. В некоторых предыдущих публикациях мы уже упоминали, чем грозит обрыв нуля, и кратко упоминали о способах защиты от несимметрии фазных напряжений. Сегодня мы более подробно рассмотрим данную тему.

Что такое обрыв нуля?

Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.

Схема 1. Штатная работа системы

Как видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.).

В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем.

Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.

Совет

Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться.

К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети.

По итогу, в трехфазной системе питания возникнет несимметрия напряжений.

Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.

Что происходит в электросети при обрыве нуля?

Рассмотрим отдельно, изменение режима работы трехфазной сети при обрыве магистрального нуля и как поведет себя однофазная электрическая проводка, если отгорание нулевого проводника произойдет на вводе.

Отгорание нуля в трехфазной сети

Внесем изменения в рисунок 1, вызванные аварией, а именно отключением нуля .

Оборвался нулевой магистральный проводник

В данном случае обрыв общего нулевого провода приведет к тому, что движение электрического тока по нему прекратиться. В результате все квартиры R1-R3 будут запитаны по типу подключения «звезда без нулевой магистрали». Другими словами, при обрыве нуля на каждую квартиру будет поступать не фазное, а линейное напряжение.

Контур из квартир 1 и 2

Для примера предлагаем рассмотреть, как сложится ситуация в квартирах 1 и 2. Нагрузка электрических приборов суммируется в данном контуре при прохождении через него тока I12.

Соответственно, уровень напряжения для квартир установится в зависимости от нагрузки подключенных к сети приборов. То есть: U1 = I12*R1, а U2 = I12* R2.

Из этого следует, что суммарная величина силы тока составит I12 = U12 / (R1+R2)  :

Обратим внимание, что суммарное напряжение контура будет равно линейному в данной электросети, то есть U12 = 380 вольт. Но при этом показатели U1 и U2 могут варьироваться в диапазоне 0-380 вольт и, естественно, существенно отличаться друг от друга. На данные значения может влиять как нагрузка подключенных приборов в каждой из квартир, так и ее активная и пассивная составляющая.

В результате если произойдут проблемы с нейтралью трансформатора (нулем источника), велика вероятность выхода из строя подключенных к сети приборов. Причина – повышение уровня напряжения в сети.

Обрыв нуля в однофазной сети

В данной ситуации последствия будут не такими печальными, как в описанном выше случае, но, тем не менее, если отгорает вводный ноль в системе TN-C, это может представлять серьезную опасность для жизни человека.

Отгорание нуля в схеме однофазного потребителя

Для однофазных нагрузок обрыв нуля будет аналогичен отключению напряжения, за исключением того фактора, что на фазном проводе останется потенциал, представляющий опасность для жизни.

Причем, он также проявится там, где был ранее защитный ноль в контактах розеток. Если корпуса электроприборов заземлялись рабочим нулем, то весьма велика вероятность негативных последствий.

В системах TN-C-S фактор риска существенно сокращается, за счет использования PEN проводника.

Как защититься?

Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:

  • Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
  • Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
  • Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.

В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.

Подведем итоги

Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, – принять необходимые меры для обеспечения защиты.

Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети.

Обнаружив первые признаки этого явления, следует отключить все электроприборы.

Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.

Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:

  • Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
  • Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
  • Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
  • Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
  • Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
  • Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
  • Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.
Читайте также:  Расчет узо и автоматов - советы электрика

Собственно, только многоуровневая защита может обеспечить максимальную безопасность.

Видео по теме статьи

Источник: https://www.asutpp.ru/chem-opasen-obryv-nulevogo-provoda.html

Отгорание нуля, что происходит и как защититься?

Привет, друзья. Сталкивались когда-нибудь с явлением «отгорание нуля»?  Если нет, то вы счастливый человек. Но знать об этом, особенно электрикам, будет полезно. Поговорим о том, почему этот таинственный ноль имеет тенденцию отгорать, что происходит при этом и какая бывает защита от отгорания нуля? Для того чтобы понять это, немного вспомним физику.

Нашел в интернете хорошее видео по теме, коротко и ясно, если не любите читать, смотрите ниже. Итак, начнем.

Ноль, для однофазной цепи, это название проводника, который не находиться под высоким потенциалом относительно земли. Фаза, это второй проводник , она имеет высокий потенциал переменного напряжения относительно земли. В России, чаще всего, это 220-230 Вольт. Ноль при этом не проявляет тенденции к отгоранию.

Основная загвоздка — все линии электропередачи, являются трехфазными. Рассмотрим традиционную схему «звезда»:

Здесь и появляется понятие «нулевой проводник».

В трех одинаковых нагрузках, переменный ток каждой фазы сдвинут по фазе на 1/3. В идеале, эти токи компенсируют друг друга. При такой нагрузке, в средней точке, векторная сумма токов равна нулю.

Обратите внимание

Получается, что через нулевой провод, подключенный к средней точке, ток не течет (он практически не нужен).

Незначительный ток на нулевом проводнике все же возникает. Это происходит, когда нагрузки на фазах не полностью компенсируют  друг друга, тоесть разные.

Прямое доказательство этому можно увидеть на практике, посмотрите на четырехжильные кабели для трехфазных цепей, нулевая жила вдвое меньшего сечения, чем фазные.

Зачем тратить дефицитную медь, если тока в жиле практически нет? Имеется смысл…

При сосредоточенной нагрузке, в трехфазной цепи, ноль тоже не расположен к отгоранию.

Интересное начинается тогда, когда к трехфазной цепи начинают подключать однофазные нагрузки (многоквартирных домах, например). Каждая нагрузка представляет случайно выбранное устройство.

При использовании одной фазы из трехфазной цепи, их стараются распределить по мощности так, чтобы на каждую приходилась  примерно одинаковая нагрузка.

Все понимают, что полного равенства при этом не достигнуть.  Жители дома будут случайным образом включать, выключать электроприборы, поэтому нагрузка будет постоянно меняться.

Полной компенсации токов в средней точке происходить не будет, но ток нулевого проводника обычно не достигает максимального значения, большего току в одной из фаз.

Ситуация предсказуемая, отгорание нуля при этом бывает крайне редко.

Почему происходит отгорание нуля?

Сегодня мы регулярно пользуемся большим количеством электрических приборов, большинство из них это импульсные источники питания. Это телевизоры, радиоприемники, компьютеры итд. Характер потребления тока этими приборами сильно отличается от прежних.

В цепи, возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Прибавляем к ним некомпенсированные, вызванные разностью однофазных нагрузок и получаем ток, близкий к самому большому току одной из фаз, или даже превышающий его.

Вот мы и пришли к благоприятным условиям для отгорания нуля. Чаще всего отгорание происходит в слабых местах, где: поврежден провод, занижено сечение кабеля, плохой контакт.

С каждым днем в обиходе появляется все больше электроприборов, соответственно ситуация ухудшается. Поэтому при монтаже электропроводки, необходимо учитывать высокую вероятность отгорания нулевого проводника. Пренебрегать этим не стоит.

Что происходит при отгорании нуля?

В лучшем случае погаснет свет, перестанут работать розетки. О плохом писать не хочется, думаю, понимаете, что перегрузка приводит к нагреву провода, плавке, пробою изоляции итп.

Кроме того, при отгорании нуля, в цепи могут происходить серьезные скачки напряжения. На фазе, где было повышенное потребление, напряжение падает практически до нуля. В то же время, на фазе где потребление было меньше всего, оно вырастает до 380 Вольт. Чувствуете чем пахнет?

Подобное явление может вывести из строя вашу технику!

Что делать, спросите вы? Существует защита.

Защита от отгорания нуля

Для защиты от вышеуказанных инцестов  умные люди придумали реле контроля напряжения. Если напряжение выходит за допустимые пределы, реле отключает его, защищая тем самым все подключенные приборы и оборудование.

Напоследок небольшое видео, где наглядно можно увидеть, что происходит при отгорании нуля.

Такие вот дела. Если есть, что дополнить, оставьте комментарий.

Также советую , чтобы , получать новые статьи прямо к себе на e-mail.

Источник: https://elektrobiz.ru/zametki-elektrika/zashhita-ot-otgoranie-nulya.html

Обрыв нуля и перекос фаз в трехфазной сети. Несимметрия напряжения

В наших статьях мы часто упоминали перекос фаз в трехфазной сети, о том, что это неприятная ситуация, приводящая к несимметрии напряжения и выходу из строя бытовых приборов.

Читатели обратили внимание на то, что в таких ситуациях защитная автоматика должна привести к отключению, или что-то можно было сделать своими руками, по крайней мере, большинство вопросов было сформулировано именно так.

На самом деле нет, поэтому мы решили в рамках этой статьи рассмотреть эту проблему – защиту от перекоса фаз.

Для начала возьмем обычные весы – с коромыслом, на которое положим шарик. Пока весы в равновесии шарик будет посередине. Но как только коромысло наклонится, шарик покатится под уклон.

У шарика тоже есть вес, поэтому, чем ближе он будет к краю коромысла, тем сложнее будет уравновесить эти весы. Проблема даже не в том, что вес шарика неизвестен, дело в том, что он двигается.

Примерно такая же проблема возникает, когда возникает перекос фаз в трехфазной сети, только при этом у весов будет не два плеча, а три, и куда покатится шарик непонятно.

Важно

В примере выше нет формул, но зато есть физика явления, поскольку даже в сети из двух фаз (или фазы и нейтрали) шарик это фактически потребляемая мощность . Если процесс не остановить, то шарик докатится до конца плеча весов, упадёт на чашку, и восстановить равновесие уже не получится, без вмешательства извне. Графически это можно представить вот так:

Зелёные линии – это равновесное состояние, красные показывают, как может измениться напряжение при перекосе фаз в трёхфазной сети , причём аварийной будет ситуация, когда значение отрезка «Фаза С точка N’» превысит 300 вольт. Крайним случаем будут ситуация, в которой точка N совпадёт с «Фаза А» или «Фаза В». Ещё раз смотрим на рисунок – перекос (отрезок N – N’, значение перекоса) в этой ситуации достигнет значения 220 В.

При этом на отрезке «Фаза С – N’» значение напряжения вместо 220В составит 380 В. Для бытового прибора, рассчитанного на максимальные 250 В это катастрофа. Конечно, защитные автоматы должны будут в таких условиях обесточить линию, но это произойдёт только при наличии нагрузки в цепи.

Подведём промежуточный итог: перекос фаз в трёхфазной сети – это ненормальная ситуация, приводящая к изменениям параметров сети,  что может привести к авариям. Давайте посмотрим, откуда возникает такой перекос, и можно ли с ним бороться.

Причины появления перекоса фаз

Мы уже подробно разбирали трёхфазную сеть , осталось рассмотреть ещё один аспект – обрыв нуля в трехфазной сети , который является самой неприятной аварией.

В электросетях обрыв любого провода уже авария, которая ни к чему хорошему не приводит, но разрыв нейтрали это особенная неприятность.

Подавляющее количество квартир сегодня запитано от трёхфазных трансформаторов с глухозаземлённой нейтралью.

Помимо безопасности именно эта нейтраль позволяет безболезненно выравнивать небольшие перекосы фаз в трехфазной сети , подавая в квартиры более-менее 220В с заземлением.

Отключаем нейтраль (например, в стояке подъезда). Что мы получим в итоге этой ситуации? Для начала мы получим неуправляемый процесс перераспределения напряжения (который будет зависеть от загрузки каждой из фаз в разных квартирах). Наиболее сопротивляющаяся (загруженная) фаза возьмет на себя функцию «нейтрали». Напряжение в ней начнёт повышаться до значений в 380В.

Самая разгруженная фаза «просядет» до 127В или ниже. Результат будет прогнозируемый – выход из строя бытовой техники, перегоревшие лампы и прочие неприятности. Первыми выйдут из строя приборы с двигателями, потом с нагревательными элементами. Точные приборы тоже пострадают, но в меньшей степени. Современный телевизор вряд ли сгорит – выключится.

Но стиральная машинка не выживет точно.

Хуже всего придётся тем, кто окажется «в конце» этой линии, нагрузки превысят допустимые, притом, что не все автоматы «сообразят», что пора отключиться. Здесь крайне велики риски возгораний, как приборов, так и проводки.

Совет

Так что обрыв нуля в трехфазной сети – граничный случай, где полная несимметрия напряжений, отсутствие заземления = поражение током человека и гарантированная аварийная ситуация для электросети.

На фото как раз пример крайнего перекоса фаз на тестовом приборе:

Это, конечно, самая неприятная ситуация, но перепады напряжения в сети тоже не так безобидны, как кажется, особенно когда речь идёт о частном доме запитанном от трёх фаз.

Простое реле контроля напряжения, которое можно установить в квартире (или щитке), настроенное на принудительное отключение при изменениях именно напряжения, поможет уберечь от такой ситуации электропроводку и приборы.

Вернёмся к другим причинам перекосов фаз в трехфазной сети , точнее нас больше интересует бытовое приложение – то есть двухфазная сеть квартиры или частного дома, которая является СОСТАВНОЙ частью трехфазной сети. Не стоит забывать именно об этой детали – наши две фазы лишь часть большой энергосистемы.

Очередной пример. В нашей квартире 4 линии. Возьмем все приборы, удлинители и тройники и всё включим в одну розетку одной линии. А в розетку другой линии включим мультиметр и посмотрим на то, что будет с напряжением.

Что произойдёт? Да, автомат защиты прекратит это безобразие и отключит проблемную линию. Но перед этим мы увидим на мультиметре «свободной линии», что напряжение значительно превысит 220 В.

Как раз на этом принципе и построена защита от перекоса фаз – распределение нагрузки.

Ещё раз – перекос фаз возникает в ситуации, когда одна из фаз «перегружена» нагрузкой, а другая «свободна». Те самые весы – на одну чашку мы складываем приборы, включая их один за другим, а вторая чаша весов пустая. Естественно чаша с приборами перевесит пустую.

В реальности для разветвлённой энергосистемы процесс сложнее, поскольку в процессе участвуют промышленные электроприемники, системы уличного освещения, а также реактивная мощность.

Но смысл процесса именно таков – главная задача электрика, особенно доморощенного, такого как мы, правильно спрогнозировать нагрузки на разных участках электросети в квартире или доме, не допуская сосредоточения мощных потребителей в одной линии.

Способы защиты от перекоса фаз

Таким образом, для защиты от перекоса фаз используются следующие способы:

  1. Грамотное проектирование сети с прогнозом нагрузок. Это позволяет сбалансировать потребление так, что фазы участвующие в питание объекта нагружены равномерно.
  2. Использование приборов, позволяющих выравнивать нагрузку по разным фазам в автоматическом режиме, без участия оператора (для больших объектов).
  3. Изменение схемы потребления в уже существующих сетях, если были допущены ошибки проектирования сети или изначально не было возможности оценить мощность потребления на каждом участке.
  4. Изменение мощности потребителей в самых критических ситуациях.

Самым крайним способом исключения перекоса является перераспределение подачи энергии (переключение многоквартирного дома на более нагруженную линию), что позволяет проблемный объект «разбавить» большим количеством потребителей на всех трёх фазах.

Есть и другие способы, но они относятся к промышленному потреблению, мы рассматривать их не будем. И заметим, что грамотный проект (схема) не панацея, электросеть дома или квартиры не догма, она живёт вместе с жильцами и меняется так часто, что за несколько лет может отличаться от исходного состояния.

Главный вывод этой части статьи – прежде чем подключить электропроводку , продумайте, всё ли вы равномерно распределили по разным линиям. Если покупаете очень мощную стиральную машинку – сделайте для неё отдельную линию. Обратитесь к электрикам, которые помогут правильно эту линию включить.

Обратите внимание

В конечном итоге несимметрия напряжений во всём подъезде это суммарные перекосы всех потребителей.

Чем равномернее будет потреблять электричество Ваша квартира, тем меньше проблем будет на этаже, а чем больше будет таких этажей, тем стабильнее будет напряжение, тем дольше будут без проблем работать все электроприборы.

Заключение. Зачем в быту нужны знания о перекосах фаз?

Когда «фаза ушла» и случилась авария, сделать, конечно, ничего не получится, всё уже случится. Но, тем не менее, хотя бы общее представление о равновесии электросистемы должно быть, поскольку ряд признаков дадут понимание о том, что возможна аварийная ситуация.

Читайте также:  Нулевая шина в щитке - советы электрика

Основной проблемой перекоса фаз в трехфазной сети является перепад напряжений. Токи тоже будут меняться, но напряжение – основной признак, который даст понимание, что, возникают проблемы.

Мы попробовали эти признаки расположить по наглядности , надеемся, это будет полезно, особенно если у Вас квартира в новостройке.

Обрыв нуля в трехфазной сети мы рассматривать не будем, признаков тут нет, обычно это авария, имеющая слишком короткий временной промежуток до появления последствий, но, тем не менее, главное – обесточить свою электросеть. И важно – вынуть вилки из розеток! Итак, что должно вызвать подозрения:

  • Мигание энергосберегающих ламп или ламп дневного света. Даже мерцание должно насторожить, поскольку эти источники света наиболее чувствительны к напряжению;
  • Мигание ламп накаливания, тусклый или наоборот яркий свет. Изменение яркости, которое видно визуально, хороший повод выключить вводной рубильник, чтобы выяснить причину. В этом случае изменения напряжения уже большие;
  • Признаки нештатной работы электроприборов. Это относится к приборам с встроенной защитой – утюги, электрочайники, микроволновка и т.д. Чайник отключается, микроволновка не стартует. Это говорит о том, что напряжение в сети ниже допустимого. Автоматы защиты пока не реагируют, но параметры сети явно изменились;
  • «Тёплый» выключатель, которым включается свет. Вы можете и не увидеть мигания, но, выключая свет, почувствовали, что выключатель теплее стены. Это опасный признак;
  • При включении вилки в розетку видно (слышно) искрение. Не втыкайте вилку. Это уже совсем плохой признак. Возможно тот самый обрыв нуля в трехфазной сети ;
  • Спонтанные отключения автоматов защиты, при отсутствии перегрузок и понимании, что нагрузка в квартире (доме) никак не изменилась. Выражается это при включении освещения или приборов включенных в сеть (тот же чайник). Как правило, в таких сетях хорошо сделана защита, приборы уцелеют, но меры предосторожности не помешают;
  • Искрение, звуки щелчков в щитке и подобные признаки при входе в квартиру должны насторожить больше всего. В таких ситуациях не стоит пытаться включить лампочку – лучше всего узнать у соседей, что у них происходит и вызывать аварийную бригаду энергетиков. То же самое стоит делать, если на площадке в подъезде лампочка сильно мигает или вообще перегорела (особенно с разрушением колбы). Это признаки аварийной ситуации всей электросети, а не только у Вас в квартире.

И, конечно, стоит подумать над тем, чтобы установить прибор, который может в постоянном режиме показывать напряжение: реле, индикатор или другой. Некоторые современные счётчики снабжены такой опцией, что позволяет визуально контролировать входное напряжение.

Такого рода индикатор незаменим, поскольку не все умеют использовать измерительные приборы, да и сложно постоянно вольтметром или мультиметром измерять параметры.

Отличный выход – стабилизатор напряжения для частного дома (в зоне ответственного оборудования), который показывает входное напряжение и то, которое он даёт на приборы.

Ну и никто не отменял здравый смысл, а также понимание того, что приборы никогда не начнут вести себя «как-то не так», особенно все сразу.

Если это происходит – начинайте принимать меры до того, как перекос фаз приведёт к прямым убыткам.

Помните, что энергетики, конечно, несут ответственность за параметры сети, но она ограничена и границами и множеством оговорок, так что в случае такого рода аварий, рассчитывать на компенсацию не приходится.

Источник: http://obelektrike.ru/posts/obryv-nulja-i-perekos-faz/

Однофазная и трехфазная электрическая сеть

Вступление

Здравствуй Уважаемый читатель сайта Elesant.ru. Электрический ток «доставляется» до потребителя по высоковольтным линиям электропередач. Электрический ток линий электропередач имеет высокое напряжение и напрямую не может использоваться потребителями. Для повседневного использования электрического тока доставленного ЛЭП его напряжение нужно понизить.

Для этого возле потребителей устанавливаются специальные трансформаторные подстанции. Трансформаторные подстанции понижают высоковольтное напряжение до номинальных значений пригодных для использования. Остановимся немного на подстанциях.

Трансформаторная подстанция

Трансформаторные подстанции это электроустановка, предназначенная для приема, преобразования и распределения электроэнергии от линий электропередач.

Состоят подстанции из понижающего трансформатора, распределительного устройства (РУ) и устройств управления.

По способу строительства и расположения подстанции подразделяются на пристроенные, встроенные, внутрецеховые. Для загорода наиболее распространены мачтовые и столбовые подстанции.

Важно

Основным элементом подстанции является понижающий трансформатор. Понижающие трансформаторы могут быть трехфазные и однофазные. Однофазные трансформаторы используются в комплексе с трехфазными трансформаторами и в основном в сельской местности.

Понижается напряжение в трансформаторах до номинального рабочего напряжения 380 или 220 вольт. Называются эти напряжения линейным и фазным соответственно. А питание потребителей называется соответственно трехфазным и однофазным. Рассмотрим виды питания потребителей подробнее.

Однофазное электрическое питание

Однофазное электропитание запитывает потребителя от одной фазной линии и линии нулевого рабочего провода. Линии для однофазного питания называют однофазными электрическими сетями. Номинальное рабочее напряжение однофазных электрических сетей составляет 220 вольт.

Сами однофазные сети тоже можно разделить в зависимости от рабочих проводников.

Однофазная двухпроводная сеть

В однофазных двухпроводных сетях для электропитания используются два провода: фазного(L) и нулевого (N). Такая электрическая сеть не предусматривает заземление электроприборов. Двухпроводная электрическая сеть была да и остается самой распространенной в старом жилом фонде.

Если у вас дома проводка выполнена проводами с алюминиевыми жилами, скорее всего у вас двухпроводная электрическая сеть.

Пример схемы: однофазная двухпроводная сеть в квартире

Однофазная трехпроводная сеть

В однофазных трехпроводных сетях используются три провода: фазного(L), нулевого (N) и защитного, заземляющего.

Третий заземляющий провод предназначен для дополнительной защиты человека от поражений электрическим током.

Соединение заземляющего провода с корпусами электроприборов (заземление), позволяет отключать электропитание при замыкании фазного провода на корпус прибора (короткого фазного замыкания). Обозначается PE.

Заземление защищает не только человека от поражений электротоком, но и спасает сами электроприборы от перегораний.

Пример схемы:однофазная трехпроводная сеть в квартире

Трехфазное электрическое питание

При трехфазном питании в электрощит квартиры или ВРУ дома заводится три питающие фазы(L1;L2;L3) и нулевой рабочий проводник(N). Номинальное рабочее напряжение между любыми фазными проводами составляет 380 вольт.

Напряжение между любым фазным проводом и рабочим нулем составляет 220 вольт.

От электрощита проводка, распределяется по квартире или дому, согласно схеме электропроводки, обеспечивая 220 вольтовое или з80 вольтовое питание для электроприборов.

При расчете трехфазной электросети важно правильно распределить нагрузку между тремя фазами. Неравномерное распределение нагрузки между фазами приведут к перекосу фаз, сильный перекос фаз приведет к аварийной ситуации вплоть до обгорания одной из фаз.

Распределить трехфазное питание по квартире или дому можно электрокабелями с четырьмя или пятью проводами

Трехфазная четырехпроводная электрическая сеть

При четырехпроводной электропроводки электропитание происходит от трех фазных проводов и рабочего нуля. От электрощитка или распределительной коробки проводка распределяется по розеткам и светильникам двумя проводами: каждым фазным и нулевым(L1-N; L2-N; L3-N).Напряжением 220 вольт. На схемах фазы могут обозначаться А, В, С.

Пример схемы: трехфазная четырехпроводная сеть в квартире

Трехфазная пятипроводная электрическая сеть

В трехфазной пятипроводной электрической сети «появляется» пятый заземляющий провод, выполняющий защитные функции. Обозначается (PE)

Важно! Во всех трехфазных сетях важно равномерное распределение нагрузки (потребляемой мощности) между фазами.

Опредилять нагрузку сети при трехфазном питании нельзя по основному закону электротехники, зокону Ома. Для расчетов нужно учитывать коэффициент мощности(cosф) и коэффициент спроса (Кспроса).

Обычно для квартир cosф=0,90-0,93;Кспроса=0,8. Значение 0,8 принимается, если потребителей более 5.

Пример схемы:трехфазная пятипроводная сеть в квартире

Нормативные ссылки

Правила Устройства Электроустановок(ПУЭ),издание 7.

Другие статьи раздела: Электрические сети

Источник: https://elesant.ru/elektricheskie-seti-zhilogo-doma/odnofaznaya-i-trekhfaznaya-elektricheskaya-set

Назначение нулевого провода

Провод, соединяющий нулевую точку фаз генератора,трансформатора с нулевой точкой нагрузки, называют нулевым или нейтральным.

Его называют нулевым потому, что в некоторых случаях ток в нем равен нулю, и нейтральным исходя из того, что он одинаково принадлежит любой из фаз.

Назначение нулевого провода в том, что он необходим для выравнивания фазных напряжений нагрузки,когда сопротивления этих фаз различны, а также для заземления электрооборудования в сетях с глухозаземленной нейтралью.

Благодаря назначению нулевого провода напряжение на каждой фазе нагрузки будет практически одинаковым при неравномерной нагрузке фаз. Осветительная нагрузка, включенная звездой, всегда требует наличия нулевого провода, так как равномерная нагрузка фаз не гарантируется.в э

Сечение нулевого провода трехфазных линий, в которых нулевые провода не используют для заземления (специальные или реконструируемые сети освещения), принимают близким к половине сечения фазных проводов.

Совет

 Если, например, фазные провода имеют сечение 35 мм2, нулевой провод берется 16 мм2.

Сечение нулевого провода трехфазной системы с глухозаземленной найтралью, в которой нулевой провод используется для заземления, должно быть не менее половины сечения фазных проводов, а в некоторых случаях равно им.

Нулевой провод воздушных линий 320/220 В должен иметь одинаковую марку и сечение с фазными проводами:

на участках, выполненных стальными проводами, а также биметаллическими и сталеалюминиевыми фазными проводами, сечением 10 мм2;

при невозможности обеспечения другими средствами необходимой селективности защиты от коротких замыканий на землю (при этом допускается принимать сечение нулевых проводов большее, чем фазных проводов).

Поскольку в одно- и двухфазных линиях по нулевому и фазному проводам протекает ток одинаковой величины, то для этих линий сечение нулевых и фазных проводов берут одинаковым.

 Аналогично нулевые проводники стояков в жилых зданиях при сечении фазных проводов до 16 мм2 (по меди) должны иметь сечение, равное сечению фазных проводов.

Особого подхода требует выбор нулевого провода в сетях с газоразрядными лампами. В нулевых проводах трехфазных линий, питающих газоразрядные лампы, протекает ток высших гармоник, вызванный индуктивно емкостными ПРА. Этот ток не влияет на потерю напряжения, а влияет только на нагрев проводов.

Сечение нулевого провода в таких случаях выбирают по допустимому току нагрузки.

Обратите внимание

Ток в нулевом проводе трехфазных линий при смешанной нагрузке (лампы накаливания и газоразрядные лампы) определяют приблизительно как сумму 90% тока газоразрядных ламп и 30% тока ламп накаливания самой нагруженной фазы.

Нет похожих статей.

Источник: http://elekkom56.ru/reference-information/naznachenie-nulevogo-provoda.html

Трехфазные и однофазные сети

Трехфазная сеть — это способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Те провода, по которым ток идет, называются фазными, а по которому возвращается — нулевым.

Трехфазная цепь состоит из трех фазных проводов и одного нулевого. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120°.  Передача переменного тока происходит именно при помощи трехфазных сетей.

Это выгодно с экономической точки — не нужны еще два нулевых провода. Подходя к потребителю, ток распределяется на три фазы, и каждой из них дается по нулевому проводу. Так он попадает в квартиры и дома.

Хотя в частном секторе нередко трехфазная сеть заводится прямо в дом.

Любая однофазная электрическая цепь состоит из двух проводов. По одному проводу ток поступает к потребителю, а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.

Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере.

В случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление.

По этому проводу избыток электричества в буквальном смысле слова уходит в землю.

От трансформаторной понижающей подстанции до ВРУ (Вводно-распределительное устройство, где происходит прием, учет и распределение электрической энергии) приходит трехфазная сеть пятижильным проводом, а в наши квартиры приходит уже трехжильный.

Важно

На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри ВРУ выполняется схема разъединения трехфазной цепи на однофазные.

К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель. В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет.

Относительно земли у него нет потенциала в отличие от фа-
зного провода, в котором напряжение (фазное напряжение между фазой и нулем) равно 220 В. Между фазами (так называемое линейное напряжение между любыми из трех фаз) напряжение 380 В.

Фазные провода в трехфазной сети обычно маркируются так: фаза А — желтый, фаза B — зеленый, фаза C — красный.

Читайте также:  Предохранитель с плавкой вставкой - советы электрика

В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи.

Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. Понятно, что нагрузка на 2 эти фазы неодинакова, происходит перекос фаз и ни о каком нейтральном проводнике речи уже не идет.

На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше. Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.

На данный момент ситуация усугубляется еще тем, что большинство домашних электроприборов являются импульсными. По этой причине возникают дополнительные импульсные токи, которые не компенсируются в средней точке.

Эти импульсные приборы вместе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике может оказаться ток равный или превышающий ток одной из фаз.

Однако нейтраль такого же сечения, что и фазный провод, а нагрузка больше.

Вот почему в последнее время все чаще возникает явление, называемое «отгоранием» или обрывом нулевого проводника — нейтральный проводник просто не справляется с нагрузкой, перегревается и отгорает.

Для защиты от такой неприятности надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно).

Совет

Поэтому оптимальным решением я считаю использование реле контроля напряжения, которое отключит питание квартиры в случае выхода напряжения за допустимые пределы. Тем самым оно защитит ваши электроприборы.

Реле контроля напряжения

Какую сеть лучше провести в частном доме?

Если у вас в доме есть трехфазное оборудование, то ответ очевиден. Также к плюсам трехфазной сети можно отнести то, что на ввод можно использовать кабель меньшего сечения, чем при однофазной, так как в трехфазной сети мощность распределяется по трем фазам, благодаря чему на каждую фазу приходится меньшая нагрузка.

К минусам трехфазного ввода можно отнести более высокие расходы на покупку трехфазных автоматов, УЗО, счетчика, габариты распределительного щита будут больше чем однофазного, а также при трехфазной сети необходимо грамотно распределить нагрузку по фазам во избежании перекоса фаз — несимметрии токов и напряжений.

Что касается мощности, то здесь в основном все зависит от максимально разрешенной мощности, указанной в технических условиях на подключение.

Если у вас на даче небольшой летний домик или бытовка и разрешенная мощность предположим 5квт, то вполне достаточно будет однофазного ввода, а вот при наличии большого загородного дома со множеством потребителей, или своей мастерской с трехфазными потребителями, то здесь конечно уже не обойтись без трехфазной сети.

Источник: http://electric-blogger.ru/stati/trexfaznye-i-odnofaznye-seti.html

Электропроводка в квартире – просто о сложном

Живя в современном мире трудно представить себе жизнь без электричества, с наличием которого связано не только освещение, но и работа всех бытовых приборов.

Так что же говорить о заводах и предприятиях, само существование которых немыслимо без гарантированной подачи электропитания.

Не затрагивая проблемы промышленного масштаба, давайте попробуем разобраться в квартирной электропроводке.

Основные понятия об электропроводке

Если говорить образно, электропроводка представляет собой разветвленную сеть капилляров, по которым направляется электрический ток.

В техническом описании электропроводка – это структурированная система проводов и групп кабелей, охватывающая каждое помещение в квартире и необходимая для подачи электроэнергии.

К элементам, входящим в токоведущие системы, также относятся защитные устройства и крепежные конструкции.

В строениях современного типа цепи электропитания проходят следующим образом:

  1. От трансформаторной мини-подстанции до общего распределительного щита, установленного в здании.

  2. С общего распределительного щита по распределительным линиям на этажные электрощиты.
  3. С этажного электрощита на квартирные электрические щитки.

  4. На распределительные короба в квартире.

В старых постройках квартирные щитки не предусмотрены. С общего этажного щита электропитание подается сразу в квартиры на распределительные короба. Данный тип электропроводки не отвечает требованиям безопасности, поэтому при планировании капитального ремонта рекомендуется замена электропроводки с установкой квартирного щитка.

Независимо от типа электропроводки провода на схемах маркируются следующим образом:

  • красный провод – фаза L (L1 L2 L3);
  • синий провод – ноль N;
  • желто-зеленый провод – заземляющий проводник RE.

В реальности цвет проводки может отличаться и зависеть от жил выбранного при прокладке кабеля, что особенно характерно для старых зданий. Все провода подводятся к электрическому квартирному щиту, а при его отсутствии – к общему распределительному.

Однофазное электрическое питание

Здесь наиболее уместно еще раз упомянуть о таких терминах как «земля» и «фаза», ведь мы привыкли иметь дело с бытовыми приборами, которые подключаются при помощи шнуров с двумя проводниками. Фаза – это провод, по которому проходит электрический ток, а возвращается он по второму проводнику в «землю».

Фазным называется напряжение, получаемое после выхода из понижающего трансформатора и предназначенное непосредственно для питания потребителей. Однофазная подача питания предполагает запитывание от одной фазной линии, но сами цепи классифицируются по количеству проводников.

1. Однофазная двухпроводная сеть

Однофазные двухпроводные электрические цепи включают в себя:

  • одну фазную линию L;
  • нулевой проводник N.

В данном типе электросети, характерном для старых зданий, заземление электроприборов не предусмотрено.

2. Однофазная трехпроводная сеть

Данный тип сетей включает:

  • один фазный провод L;
  • нулевой проводник N;
  • заземляющий проводник PE.

Подключение заземляющих проводников с корпусами энергопотребляющих устройств защитит человека от удара током, а сами приборы от перегорания.

Трехфазное электрическое питание

При трехфазном распределении электропитания на квартирный щиток подводятся следующие провода:

  • питающие фазные провода L1, L2 и L3;
  • нулевой проводник N.

Распределение электропроводки по квартире позволяет обеспечить питание в 220 или 380В. Напряжение между фазой и рабочим нулем составляет 220В, напряжение между двумя фазами – 380В.

При данной схеме электропитания обязательно равномерное распределение нагрузки между фазами. В противном случае повышается вероятность перекоса фаз и возникновения аварийных ситуаций.

Распределение по квартире трехфазного питания, приходящего на квартирный щиток, происходит при помощи электрокабелей.

1. Трехфазная четерехпроводная сеть

От электрического щита до распределительных коробов, расположенных в разных точках квартиры, питание распределяется по отдельным парам проводов:

  • фаза L1 и ноль N;
  • фаза L2 и ноль N;
  • фаза L3 и ноль N.

2. Трехфазная пятипроводная сеть

При таком распределении питания в щиток подается дополнительный провод – заземляющий проводник RE.

Способы прокладки электропроводки

В зависимости от способа прокладки существует следующая классификация электропроводки:

Наружная электропроводка

Данный тип электропроводки применяется для подведения электропитания к дому по воздушным линиям, что наиболее характерно для частного сектора. В зависимости от расстояния такая проводка выполняется как изолированными проводами, так и неизолированными, может быть жесткой или гибкой.

Внутренняя электропроводка

Такие системы электропроводки прокладываются во внутренних помещениях, а в качестве элементов используются шнуры, шины и изолированные провода. Внутренняя электропроводка в свою очередь разделяется на два больших класса:

1. Открытая электропроводка

Открытый тип электропроводки встречается в старых постройках, где провода прокладываются непосредственно на поверхностях стен и потолков. Крепление проводов происходит при помощи тросов, роликах и специальных изоляторах, а в качестве дополнительных элементов используются гибкие рукава и лотки, подвески, шланги и т.д.

К достоинствам открытой электропроводки относятся:

  • использование проводов с минимальным сечением;
  • быстрый монтаж;
  • возможность визуального определения места повреждения;
  • быстрое устранение неисправностей без наличия специальных инструментов;
  • лучшее решение для деревянных домов и помещений относящихся к повышенной категории пожарной опасности.

Недостатки открытой электропроводки:

  • прокладка по поверхности, что может сделать стены эстетически непривлекательными;
  • затруднение расстановки мебели или элементов интерьера;
  • дополнительные затраты при использовании кабельных каналов.

2. Скрытая электропроводка

Наиболее распространенный и безопасный способ прокладки питающих линий. Располагается в специальных бороздках, заранее выдолбленных в строительных конструкциях, и сверху заделывается при помощи штукатурки или других строительных материалов.

Достоинства скрытой электропроводки – это:

  • полное скрытие проводов и кабелей в потолках и стенах;
  • отсутствие ограничений для дизайна помещений;
  • нет вероятности повреждения проводов при расстановке мебели;
  • защита от случайного соприкосновения с оголенными частями проводов.

К недостаткам скрытой электропроводки относятся:

  • затруднение доступа при устранении неисправностей;
  • обязательный ремонт при изменении схемы прохождения электрических цепей;
  • штробление стен для прокладки скрытой электропроводки требует специальных инструментов и опыта в проведении строительных работ.

Поэтому для получения максимального эффекта от скрытой электропроводки целесообразно ее предварительное проектирование с учетом всех элементов.

Элементы электрической цепи

К основным элементам, которые входят в электропроводящую конструкцию, относятся:

  • провода или кабели, по которым подается фазовое напряжение и ноль;
  • общий электрический щит;
  • электросчетчики;
  • распределительная коробка (короб);
  • шнуры, идущие от бытовых приборов.

К дополнительным элементам, входящим в электрическую сеть, относятся:

  • заземляющий проводник RE;
  • УЗО;
  • квартирные щитки;
  • тросы и струны;
  • лотки.

Распределительный короб – важный элемент электропроводки

Основная функция распределительной коробки – это разделение общей электропроводки на несколько отдельно идущих магистралей и надежное распределение линий электропитания по всем помещениям в квартире.

Конструктивно распределительная коробка выполнена в виде пластикового короба с крышкой, с предусмотренными по бокам отверстиями для подведения проводов.

Питающий провод отдельно прокладывается для каждого помещения, далее к нему подключаются осветительные приборы, выключатели и штепсельные розетки. Все окончания питающих линий и линий потребителей электроэнергии соединяются между собой именно в распределительной коробке.

Соединение проводов происходит при помощи паек или скруток, также очень удобно применение клеммных колодок и сжимов. Оголенные части проводов обязательно изолируются.

В зависимости от типа прокладки существуют распределительные коробки для скрытых и открытых электропроводящих систем.

При открытой электропроводке, проходящей поверх стен, короб также устанавливается сверху. При прокладке скрытых систем короб утапливается в стенах с обязательным закреплением строительных смесей.

Короба устанавливаются таким образом, что была возможность открытия верхней крышки для доступа к проводам.

Защитные элементы электрической цепи

Вводно-распределительный щит, устанавливаемый обычно в подвале многоквартирного дома, обязательно содержит ряд предохранителей, которые защищают электропроводку от замыканий при перегрузках или непредвиденных авариях. В квартирных щитках также предусмотрены предохранители, которые отключат подачу электроэнергии в отдельную квартиру в случае замыкания.

Все идущие от распределительного щитка электролинии разбиваются на отдельные сегменты, что является необходимым для равномерного распределения нагрузки. Каждой группе проводов соответствует свой предохранитель, рассчитанный на пропускание определенной силы тока.

В бытовых условиях чаще всего используются плавкие предохранители, состоящие из фарфоровой пробки с проводом, выдерживающим только определенную силу тока.

Обратите внимание

При перегрузке или замыкании провод расплавляется, что отключает неисправный участок и препятствует дальнейшим повреждениям.

Кроме предохранителей существуют устройства, направленные на то, чтобы свести к минимуму риск поражения электрическим током:

1. Автоматический электровыключатель

Такое устройство не только выполняет функции обычного выключателя, но автоматически может отключить подачу питания, если проходящий через него ток выше заданного предела. Все характеристики отмечены непосредственно на поверхности выключателя, который может быть одинарным или пакетным.

2. Устройство защиты и отключения (УЗО)

УЗО, сравнивая токи, приходящие по фазе и уходящие по нулевому проводу, обеспечивает своевременное отключение электропитания при выявлении разницы. Такая разница токов может возникнуть в следующих случаях:

  • нарушение изоляции;
  • наводки;
  • поражение людей электротоком.

Подробнее о заземлении

Защитное заземление конструктивно представляет собой преднамеренное соединение нетоковедущих частей, рискующих оказаться под напряжением в случае пробоя, с землей.

Защитное заземление, которое следует отличать от рабочего заземления, включает следующие элементы:

  • заземлитель – совокупность проводящих частей соединенных между собой.

    Заземлитель может быть выполнен в виде обычного металлического стержня или группы элементов специальной формы;

  • заземляющий проводник, предназначенный для соединения заземляемых конструкций, цепей или отдельных элементов непосредственно с заземлителем.

Минимальное сопротивление заземляющего проводника обеспечивает протекание тока, в случае пробоя, непосредственно по нему, а не через тело человека, которое обладает большим сопротивлением.

Если постройка многоквартирного дома была выполнена после 1995 года, то здесь вероятнее всего реализована система заземления по схеме TN-S, в которой на протяжении всей цепи нулевой и заземляющий проводники разделены. Заземляющий провод уходит в землю на питающей дом трансформаторной подстанции.

Если же здание построено гораздо раньше, то отдельное заземление, которому раньше не придавали значения, здесь отсутствует. Нулевой проводник объединен с защитным заземлением по схеме TN-C. При пробое нулем станет тот, кто первый прикоснется к электроприбору. Вся надежда на устройства УЗО и автоматы с предохранителями.

Лучшим вариантом станет модернизация общей электропроводки в доме: на главном водно-распределительном щитке устанавливается шина заземления, от которой пробрасывается провод, уходящий в землю и соединяемый с разрядником. После этого остается сделать разводку новых проводов по квартирам щиткам и далее по квартирам, предварительно соединив их с заземляющей шиной.

Источник: http://HodRemonta.ru/elektrika/elektroprovodka-v-kvartire.php

Ссылка на основную публикацию
Adblock
detector