Ротор асинхронного двигателя – советы электрика

Принцип работы асинхронного электродвигателя

Простым по собственному устройству и самым всераспространенным является асинхронный движок придуманный  М. О. Доливо-Добровольским. Механизм работы которого основан на содействии крутящего магнитного поля на приспособленную для вращения короткозамкнутую обмотку.

Для усиления магнитного поля и придания ему подабающей конфигурации, обмотки асинхронного двигателя размещены на 2-ух сердечниках, которые собираются из листов электротехнической стали шириной 0.5 мм.

Листы друг от друга изолированы слоем лака, для уменьшение утрат на вихревые токи.

У недвижной части машины – статора, сердечник имеет форму полного цилиндра. В пазах с внутренней стороны этого сердечника уложена трехфазная обмотка. Эта обмотка врубается под напряжение трехфазной сети и возникающие в ней токи возбуждают крутящееся магнитное поле машины.

Обратите внимание

Механизм работы асинхронного электродвигателя основан на содействии вращающегося магнитного поля

У подвижной части – ротора сердечник имеет форму цилиндра. Он укреплен на валу машины. В пазах на поверхности сердечника располагается обмотка ротора. Почти всегда короткозамкнутая.

Если ее на уровне мыслей снять с сердечника, то она будет иметь вид цилиндрической клеточки из медных либо дюралевых стержней, замкнутых на торцах, 2-мя кольцами из такого же материала. Такую обмотку именуют «беличьим колесом». Стержни обмотки вставляются в пазы ротора без изоляции.

Нередко короткозамкнутая обмотка ротора изготовляется методом заливки расплавленным алюминием пазов сердечника. При этом отливаются и замыкающие кольца.

Обмотка статора электродвигателя производится изолированным проводом и укладывается в пазы статора. Любая из катушек распределяется по нескольким пазам. Если обмотка состоит из 3-х катушек, то трехфазная система токов, ее обтекающих, возбуждает вышеперечисленное двухполюсное вращение.

За один период переменного тока такое поле делает один оборот. Как следует при стандартной промышленной частоте 50 гц  т. е. 50 периодов за секунду. Двухполюсное поле делает 50 х 60 =3000 об/мин. Скорость вращения ротора обычно лишь  на несколько процентов меньше скорости вращения поля.

роторо асинхронного мотора беличья клеточка (колесо)

Чтоб получить движок с наименьшей скоростью поля, необходимо средством многополюсной обмотки прирастить число полюсов крутящего магнитного поля. Каждым трем катушкам статорной обмотки, соответствует одна пара полюсов крутящего поля. Как следует, если трехфазная обмотка статора состоит из К катушек.

то число пар полюсов крутящего поля, возбуждаемого этой обмоткой будет: Р=К:З Направление вращения ротора асинхронного мотора определяется направлением вращения его магнитного поля. А направление вращения поля обуславливается  последовательностью фаз А В С трехфазной сети.

Важно

Для изменения  направления вращения мотора довольно поменять соединение обмотки статора с сетью, чтоб зажим статора, соединенный сначало с фазой А сети, был бы присоединен к фазе В сети: соответственно зажим статора, соединенный с фазой В  сети, должен быть соединен с фазой А сети.

Соединение третьего зажима статора с сетью остается без конфигураций.

Пока ротор неподвижен. Условия в асинхронном движке подобны условиям в трансформаторе: первичной обмотке трансформатора соответствует обмотка статора. А вторичной обмотка ротора. Напряжение на зажимах каждой фазной обмотки статора уравновешивается приемущественно э. д. с.

индуктируемой в этой обмотке вращающимся магнитным полем. Ток в обмотке ротора индуктируется вращающимся магнитным полем. Согласно принципу Ленца этот индуктированный ток,  стремится ослабить магнитное поле, его индуктирующее. Но ослабление магнитного поля уменьшает э. д. с.

индуктируемую этим полем в обмотке статора: как следует, нарушается электронное равновесие на зажимах статора. Так появляется неустойчивый излишек напряжения. Это вызывает повышение силы тока в обмотке статора.

Ток статора увеличивает магнитное поле приблизительно до его прежней величины и электронное равновесие на зажимах статора восстанавливается.

Асинхронный движок в разобраном виде

Соотношение токов статора  и ротора в асинхронном движке подобны соотношениям первичного и вторичного токов в трансформаторе. Ток статора является не намагничивающим. А ток ротора – размагничивающим. Всякое изменение тока ротора вызывает  пропорциональное изменение тока статора.

При пуске мотора в ход, крутящееся магнитное поле пересекает обмотку ротора с большой скоростью (угловой скоростью W:P) и индуктирует в ней значительную э. д. с. Эта э. д. с.

делает в короткозамкнутом роторе большой пусковой ток. Соответственно и в обмотке статора  появляется тоже значимый пусковой ток. Он больше рабочего тока мотора приблизительно раз в семь.

Совет

Пусковой толчок тока характерен для асинхронного мотора с короткозамкнутым ротором.

По мере того как скорость ротора растет. миниатюризируется индуктируемая в нем э. д. с. а совместно с ней уменьшаются токи ротора и статора. В конце запуска ненагруженного  мотора, сила тока ротора должна быть таковой, чтоб крутящий момент, развиваемый движком, покрывал все его механические утраты – от трений в подшипниках, о воздух и т. д.

Если нагрузить уже  крутящийся асинхронный движок, то механический тормозящий момент на валу мотора поначалу окажется подольше крутящего момента и ротор уменьшит скорость n2 / Соответственно вырастет разность скоростей n1 – n2 поля и ротора, т. е. возрастет скольжение.

Асинхронный движок с короткозамкнутым ротором

Крутящееся поле будет пересекать ротор с относительно большой скоростью и индуктировать в роторе огромную э. д. с. Возрастание  э. д. с. Вызовет повышение силы тока в роторе. Пропорционально силе тока вырастет крутящий момент и уравновесит тормозящий момент нагрузки на валу мотора.

Сразу, повышение силы тока ротора вызовет соответственное увеличение силы тока статора, в итоге чего вырастет и потребление мощности движком из сети, Таким макаром, с повышением нагрузки на валу мотора растет скольжение, силы тока статора и потребление мощности движком из сети.

Источник: http://elektrica.info/printsip-raboty-asinhronnogo-e-lektrodvigatelya/

Может ли работать асинхронный двигатель как генератор — как его использовать в домашних условиях?

В электротехнике существует так называемый принцип обратимости: любое устройство, которое преобразует электрическую энергию в механическую, может делать и обратную работу. На нем основан принцип действия электрических генераторов, вращение роторов которых вызывает появление электрического тока в обмотках статора.

Теоретически можно переделать и использовать любой асинхронный двигатель в качестве генератора, но для этого надо, во-первых, понять физический принцип, а во-вторых, создать условия, обеспечивающие это превращение.

Вращающееся магнитное поле – основа схемы генератора из асинхронного двигателя

В электрической машине, изначально создающейся как генератор, существуют две активные обмотки: возбуждения, размещенная на якоре, и статорная, в которой и возникает электрический ток. Принцип её работы основан на эффекте электромагнитной индукции: вращающееся магнитное поле порождает в обмотке, которая находится под его воздействием, электрический ток.

Магнитное поле возникает в обмотке якоря от напряжения, обычно подаваемого с аккумулятора, ну а его вращение обеспечивает любое физическое устройство, хотя бы и ваша личная мускульная сила.

Конструкция электродвигателя с короткозамкнутым ротором (это 90 процентов всех исполнительных электрических машин) не предусматривает возможности подачи питающего напряжения на обмотку якоря.

Поэтому, сколько бы вы ни вращали вал двигателя, на его питающих клеммах электрического тока не возникнет.

Тем, кто хочет заняться переделкой асинхронного двигателя в генератор, надо создавать вращающееся магнитное поле самостоятельно.

Создаем предусловия для переделки

Двигатели, работающие от переменного тока, называют асинхронными. Все потому, что вращающееся магнитное поле статора чуть опережает скорость вращения ротора, оно как бы тянет его за собой.

Используя тот же принцип обратимости, приходим к выводу, что для начала генерации электрического тока вращающееся магнитное поле статора должно отставать от ротора или даже быть противоположным по направлению. Создать вращающееся магнитное поле, которое отстает от вращения ротора или противоположно ему, можно двумя способами.

Затормозить его реактивной нагрузкой. Для этого в цепь питания электродвигателя, работающего в обычном режиме (не генерации), надо включить, например, мощную конденсаторную батарею. Она способна накапливать реактивную составляющую электрического тока – магнитную энергию. Этим свойством в последнее время широко пользуются те, кто хочет сэкономить киловатт-часы.

Если быть точным, то фактической экономии электроэнергии не происходит, просто потребитель немного обманывает электросчетчик на законной основе.

Накопленный конденсаторной батареей заряд находится в противофазе с тем, что создается питающим напряжением и «подтормаживает» его. В результате электродвигатель начинает генерировать ток и отдавать его обратно в сеть.

На практике этот эффект применяется в транспорте на электрической тяге.

Обратите внимание

Как только электровоз, трамвай или троллейбус идут под уклон, к цепи питания тягового электродвигателя подключается конденсаторная батарея и происходит отдача электрической энергии в сеть (не верьте тем, кто утверждает, что электротранспорт дорог, он почти на 25 процентов обеспечивает энергией сам себя).

Такой способ получения электрической энергии не есть чистая генерация. Чтобы перевести работу асинхронного двигателя в режим генератора, надо использовать метод самовозбуждения.

Самовозбуждение асинхронного двигателя и переход его в режим генерации может возникнуть из-за наличия в якоре (роторе) остаточного магнитного поля. Оно очень мало, но способно породить ЭДС, заряжающее конденсатор. После возникновения эффекта самовозбуждения конденсаторная батарея подпитывается от произведенного электрического тока и процесс генерации становится непрерывным.

Секреты изготовления генератора из асинхронного двигателя

Чтобы превратить электромотор в генератор надо использовать неполярные конденсаторные батареи. Электролитические конденсаторы для этого не годятся.

В трехфазных двигателях конденсаторы включаются звездой или треугольником.

Соединение «звездой» позволяет начать генерацию на меньших оборотах ротора, но величина напряжения на выходе будет несколько ниже, чем при соединении «треугольником».

Также можно сделать генератор из однофазного асинхронного двигателя. Но для этого годятся лишь те, которые имеют короткозамкнутый ротор, а для запуска используют фазосдвигающий конденсатор. Коллекторные однофазные двигатели для переделки в генератор не годятся.

Рассчитать в бытовых условиях величину потребной емкости конденсаторной батареи не представляется возможным.

Поэтому домашний мастер должен исходить из простого соображения: общий вес конденсаторной батареи должен быть равен или немного превышать вес самого электродвигателя.

На практике это приводит к тому, что создать достаточно мощный асинхронный генератор почти невозможно, поскольку чем меньше номинальные обороты двигателя, тем он больше весит.

Оцениваем уровень эффективности — выгодно ли это?

Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.

Во многих теоретических изданиях главным преимуществом асинхронных генераторов представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора.

Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.

Читайте также:  Устройство светодиодной лампы 220 - советы электрика

Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать.

Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».

У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.

Все остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.

Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.

Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки.

Важно

Однако при этом полностью теряется преимущество «простоты схемы».

Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.

Функционирование асинхронного двигателя как генератора на видео

Источник: http://elektrik24.net/elektrooborudovanie/elektrodvigateli/triohfaznye/kak-generator.html

Ремонт асинхронного электродвигателя

В статье рассмотрим ремонт асинхронного электродвигателя и его частей. Асинхронный электродвигатель – самый простой, долговечный и распространенный электромотор. Спектр его применения: заточные станки, мини-пилорамы и другие устройства, не требующие работы от аккумуляторов и регулировки скорости. В старых стиральных машинах они работают до сих пор.

Эксплуатируются трехфазные и однофазные асинхронные электродвигатели. Некоторые трехфазные моторы приспосабливаются для работы в однофазных сетях включением подключением фазосдвигающего конденсатора.

Рассмотрим характерные неисправности асинхронных двигателей и методы их устранения.

Ремонт асинхронного электродвигателя: устранение механических неисправностей

Проблемы с механикой у асинхронных моторов связаны с износом подшипников.

Определяется проблема по звуку: при увеличении зазоров в подшипниках качения шум работы двигателя становится громче, возникает вибрация. Торцевые части в районе вала нагреваются.

Это приводит к высыханию смазки, подшипник, работая «на сухую», теряет свои качества еще быстрее. Иногда при остановке вала после выключения слышно, как перекатываются шарики.

Чтобы электродвигатель работал бесперебойно читайте статью про «Устройства плавного пуска двигателей»

Выход из строя подшипников не всегда связан с их старением и выработкой ресурса. Недостаточная или неправильная смазка проводит к преждевременным поломкам.

Не смазываются только полностью закрытые подшипники качения, сепараторы которых закрыты от воздействия внешней среды, смазка помещается в них на заводе.

Остальные смазываются Литолом-24 или ее аналогами так, чтобы она полностью обволокла сепараторы с шариками.

Устройство закрытого подшипника качения

Увеличение зазоров в подшипниках приводит к еще одному явлению: вал с ротором получает дополнительную свободу в перемещениях в радиальном и поперечном направлениях. В итоге:

  • Приводимый во вращение механизм вращается неравномерно и тоже выходит из строя;
  • Ротор цепляется за крышки двигателя и за магнитопровод статора и повреждает их, а также – повреждается сам.

Для замены подшипников нужно разобрать двигатель, при этом подшипники обычно остаются на его валу. В этом случае для их демонтажа используется съемник соответствующих размеров.

Можно использовать выколотку из латуни, меди или другого мягкого материала. Выколотку прижимают к внутренней обойме подшипника. Ударяя по ней молотком и проворачивая вал, чтобы усилие распределялось равномерно, старый подшипник снимается с него.

Главное – не повредить посадочное место, на которое он одевается.

Съемник для подшипниковПример применения съемника

Если подшипник остался внутри крышки, то его выбивают, подобрав для этого подходящую по диаметру круглую болванку.

Край ее можно заточить под конус, чтобы она точно оказалась в центре внутренней обоймы.

Совет

Необходимо бить по болванке строго перпендикулярно плоскости подшипника, чтобы его наружная обойма не повредила посадочное место.

Для установки нового подшипника на вал двигателя используется металлическая трубка, желательно из мягкого материала. Внутренний ее диаметр должен быть чуть больше диаметра вала. Трубку плотно прислоняют к внутренней обойме подшипника и легкими ударами молотка по ней загоняют его на место.

При установке крышки следят, чтобы она садилась на место без перекосов, иначе наружная обойма подшипника повредит свое посадочное место.

На роторе двигателя установлены лопасти, предназначенные для вентиляции внутренних полостей мотора. Если происходит скол одной или нескольких лопастей, нарушается балансировка ротора. Это приводит к его биению, и подшипники выходят из строя чаще. Новый ротор найти сложно, поэтому такой двигатель придется выбросить.

Расположение лопастей вентилятора на роторе

Ремонт электрической части асинхронного электродвигателя

Признаками неисправностей асинхронного электродвигателя, связанных с электрикой, являются:

  • Срабатывание защитных устройств от перегрузки или короткого замыкания
  • Появление запахов горелой изоляции
  • Искрение и дым внутри мотора

Перегрев корпуса в процессе работы может указывать на неисправность в обмотке двигателя, но чаще он свидетельствует о недопустимой механической нагрузке на валу. По той же причине срабатывает защита от перегрузки.

Но она работает и при витковых замыканиях в обмотке статора. Поэтому первое, что нужно проверить после срабатывания защиты – свободно ли вращается вал, а также попытаться запустить двигатель без нагрузки, отсоединив от него агрегат.

При срабатывании защиты от коротких замыканий проверка на холостом ходу не требуется. Порядок действий при этом такой:

Действие Норма Средство проверки
Отсоединить кабель от двигателя и проверить его сопротивление изоляции. Если оно менее 0,5 МОм, кабель заменить Мегаомметр на напряжение 1000 В
При наличии фазосдвигающих или пусковых конденсаторов – проверить их исправность Мультиметр
Проверить исправность коммутационной аппаратуры У трехфазного двигателя на него должны поступать все три фазы, иначе он перегреется и сгорит Мультиметр или указатель напряжения
Убедиться, что в барно электродвигателя нет следов короткого замыкания и перегрева контактов Визуально
Измерить сопротивление изоляции между обмоткой двигателя и его корпусом Не менее 0,5 МОм Мегаомметр на напряжение 500 В

Сопротивление изоляции, если оно равно нулю, определяется и мультиметром. Но ее увлажнение или неполное повреждение покажет только мегаомметр. Он измеряет сопротивление, прикладывая к тестируемому объекту повышенное напряжение.

Мегаомметр

Если сопротивление низкое, то обмотку статора можно попробовать просушить, пропуская через него горячий воздух от строительного фена или поместив в печь. Если корпус двигателя из силумина, температура сушки выбирается такой, чтобы его не расплавить.

Если просушка не помогла или изоляция обмоток электродвигателя равна нулю, его вскрывают и осматривают. Хотя при любом результате осмотра: механическое повреждение обмоток статора, потемнение или обугливание обмотки – статор отправляется в перемотку. Перемотать самостоятельно асинхронный двигатель очень сложно.

Если причину отключения от защиты установить не удалось, возможно, в обмотке витковое замыкание. У трехфазного двигателя оно определяется сравнением сопротивлений обмоток по фазам.

У однофазных сопротивление обмоток сравнивают с паспортными значениями. Но для этого недостаточно мультиметра – его точности не хватит, чтобы почувствовать разницу.

Для измерений применяют специальные приборы – омметры с классом точности 0,5 и выше.

Замыкание между собой нескольких витков приводит к нагреву замкнутого участка. Иногда его можно определить по потемнению изоляции, иногда – только прибором. В любом случае потребуется перемотка статора.

Сгоревшая обмотка статора

Еще один дефект, требующий отправки статора двигателя в перемотку – обрыв обмотки. Его можно определить и мультиметром. Иногда обрыв можно устранить, найдя места соединений обмоточного провода с выводами и место соединения обмоток в звезду. Если контакт пропал там, то провода нужно зачистить и спаять снова.

Источник: http://electric-tolk.ru/remont-asinxronnogo-elektrodvigatelya/

Асинхронный двигатель – принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение.

Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Обратите внимание

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель – это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный.

При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 – вал, 2,6 – подшипники, 3,8 – подшипниковые щиты, 4 – лапы, 5 – кожух вентилятора, 7 – крыльчатка вентилятора, 9 – короткозамкнутый ротор, 10 – статор, 11 – коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали.

В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется “беличьей клеткой“.

В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам.

С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.

Подробнее о фазном роторе можно прочитать в статье – асинхронный двигатель с фазным ротором.

Читайте также:  Как проверить люминесцентную лампу тестером - советы электрика

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС.

Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s – это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина.

В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента.

В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр – критического скольжения.

Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме – 1 – 8 %.

Важно

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению – однофазный асинхронный двигатель. 

1 1 1 1 1 1 1 1 1 1 4.74 (430 Голоса)

Источник: https://electroandi.ru/elektricheskie-mashiny/asdvig/asinkhronnyj-dvigatel-printsip-raboty-i-ustrojstvo.html

Ротор асинхронного двигателя: устройство короткозамкнутого и фазного ротора

Внушительная мощность асинхронного электродвигателя, трансформирующего электричество в энергию вращения, создается не за счет каких-либо механических составляющих: для такого мощного вращения в его «начинке» используются только электромагниты.

Ротор асинхронного двигателя: конструкция

Ротор – вращающийся внутри статора (неподвижного компонента) элемент электродвигателя, вал которого соединен с деталями рабочих агрегатов, например, пил, турбин и помп. Шихтованный сердечник выполняется из отдельных пластин электротехнической стали с полузакрытыми или открытыми пазами.

Массивный ротор представляет собой цельный стальной цилиндр, помещенный внутрь статора, с напресованным на его поверхность сердечником.

Бесконтактная, не соединенная ни с какой внешней электрической цепью обмотка ротора, создает вращательный момент и бывает двух типов:

  • короткозамкнутая (короткозамкнутый ротор);
  • фазная (фазный ротор).

Короткозамкнутый ротор

Впаянные или залитые в поверхность сердечника и накоротко замкнутые с торцов двумя кольцами высокопроводящие медные (для машин большой мощности) или алюминиевые стержни (для машин меньшей мощности), играют роль электромагнитов с полюсами, обращенными к статору. Такая конструкция носит название «беличья клетка», данное ей русским электротехником М. О. Доливо-Добровольским.

Стержни обмотки не имеют какой-либо изоляции, так как напряжение в такой обмотке нулевое.

Более часто используемый для стержней двигателей средней мощности, легко плавящийся алюминий, отличается малой плотностью и высокой электропроводностью.

Для уменьшения высших гармоник электродвижущей силы (ЭДС) и исключения пульсации магнитного поля, стержни ротора имеют определенным образом рассчитанный угол наклона относительно оси вращения.

В двигателях малой мощности пазы сердечника, как правило, выполняют закрытыми: отделяющая ротор от воздушного зазора — стальная пластина позволяет дополнительно закрепить обмотки, но за счет некоторого увеличения их индуктивного сопротивления.

Фазный ротор

Характеризуется практически не отличающейся от обмотки статора трехфазной (в более общем случае — многофазной) уложенной в пазы сердечника обмоткой, концы которой соединены по схеме «звезда».

Выводы обмоток присоединены к закрепленным на валу ротора контактным кольцам, к которым при пуске двигателя прижимаются и скользят неподвижные, соединенные с реостатом графитовые или металлографитовые щетки.

Совет

Для ограничения возникающих вихревых токов обычно бывает достаточно нанесенной на поверхность обмоток оксидной пленки, вместо изолирующих лаков.

Добавленный в цепь обмотки ротора трехфазный пусковой или регулировочный резистор, позволяет изменять активное сопротивление роторной цепи, способствуя уменьшению больших пусковых токов. Могут использоваться реостаты:

  • металлические проволочные или ступенчатые – с ручным или автоматическим переключением с одной ступени сопротивления на другую;
  • жидкостные, сопротивление которых регулируется глубиной погружения в электролит электродов.

Для увеличения долговечности щеток, некоторые модели фазных роторов оборудуются специальным короткозамкнутым механизмом, поднимающим после пуска двигателя щетки и замыкающим кольца.

Асинхронные двигатели с фазным ротором характеризуются более сложной конструкцией, чем с короткозамкнутым, но, в то же время, более оптимальными пусковыми и регулировочными характеристиками.

Принцип работы

Электромагниты статора расположены близко к стержням ротора и передают на них электричество для его вращения.

Индуцированное в роторе магнитное поле будет следовать за магнитным полем статора, осуществляя, при этом, механическое вращение роторного вала и связанных с ним агрегатов.

При этом, созданная катушками статора электромагнитная индукция, выталкивает ток на стержнях строго от себя. Значение тока в стержнях изменяется со временем.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Источник: http://podvi.ru/elektrodvigatel/ustrojstvo-rotora-asinxronnogo-elektrodvigatelya.html

Как самостоятельно сделать генератор из асинхронного двигателя?

Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.

Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.

Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.

Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.

Схема генератора из асинхронного двигателя

схема генератора на базе асинхронного двигателя

В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:

  1. Обмотка возбуждения, которая находится на специальном якоре.
  2. Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.

Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:

  1. Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
  2. Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
  3. Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
  4. Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.

При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.

Устройство генератора

Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:

  1. Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
  2. Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
  3. Контактные кольца имеют надежный крепеж к валу ротора.
  4. В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
  5. Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
  6. Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.

Изготовление генератора из двигателя

Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.

Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:

  1. Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
  2. Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
  3. Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
  4. Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
  5. Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
  6. Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
  7. После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
  8. Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
  9. Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
  10. Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
  11. Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
  12. Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.
Читайте также:  Устройство асинхронного электродвигателя - советы электрика

После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

  1. В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
  2. Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
  3. При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

Функционирование асинхронного двигателя как генератора

В соответствии с принципами, по которым функционируют все подобные машины, работа асинхронного двигателя после преобразования в генератор происходит следующим образом:

  1. После подключения конденсаторов к зажимам, на обмотке статоров происходит ряд процессов. В частности, в обмотке начинается движение опережающего тока, который создает эффект намагничивания.
  2. Только при соответствии конденсаторов параметрам необходимой емкости, происходит самовозбуждение устройства. Это способствует возникновению симметричной системы напряжения с 3 фазами на статорной обмотке.
  3. Значение итогового напряжения будет зависеть от технических возможностей используемой машины, а также от возможностей используемых конденсаторов.

Благодаря описанным действиям происходит процесс преобразования асинхронного двигателя короткозамкнутого типа в генератор с подобными характеристиками.

Применение

В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:

  1. Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
  2. Работа в качестве ГЭС с небольшой выработкой.
  3. Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
  4. Выполнение основных функций сварочного генератора.
  5. Бесперебойное оснащение переменным током отдельных потребителей.

Советы по изготовлению и эксплуатации

Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:

  1. Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
  2. В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
  3. Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
  4. Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
  5. Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.

0,00, (оценок: 0)Загрузка…

Источник: https://slarkenergy.ru/vetrogenerator/iz-asinxronnogo-dvigatelya.html

Асинхронный генератор своими руками: схемы, принцип работы

Бесперебойное обеспечение электроэнергией – это залог комфортной жизни в любое время года.

Для организации автономного питания жилища часто используется асинхронный генератор, который также можно сделать своими руками.

Что это такое

Асинхронный генератор – это устройство переменного тока, который при помощи принципа работы асинхронного двигателя, может производить электрическую энергию. Его еще называют индукционным.

Асинхронный электрогенератор обеспечивает быстрый поворот ротора, скорость вращения при этом намного больше, чем, если бы их вращал синхронный аналог устройства.

Обычный асинхронный электродвигатель переменного тока может использоваться как генератор без каких-то дополнительных настроек или преобразований схемы.

Фото – асинхронный генератор

Область использования асинхронного генератора довольно широкая:

  1. Их применяют как двигатели для ветровых электростанций;
  2. С целью обеспечения автономного питания дома или квартиры, или как миниатюрные ГЭС-станции;
  3. Как инверторный (сварочный) генератор;
  4. Для организации бесперебойного питания от переменного тока.

При этом однофазный асинхронный генератор должен быть включен при помощи входящего напряжения. Обычно для этого устройство подключают к питанию. Но некоторые модели могут работать самостоятельно, самовозбуждением, посредством последовательного подключения конденсаторов.
Видео: устройство асинхронного двигателя

Принцип работы

Асинхронный электрический генератор производит электрическую энергию, когда скорость вращения ротора быстрее, чем синхронная. У самого обычного генератора этот показатель находится в пределах 1800 оборотов в минуту, при этом характеристики синхронной скорости около 1500 об/мин.

Схема генератора

Принцип работы асинхронного генератора основан на преобразовании механической энергии в энергию тока, т. е., электрическую.

Для того чтобы ротор начал крутиться и вырабатывать ток, нужен довольно сильный крутящий момент.

Идеальным, по мнению электриков, считается так называемый «вечный холостой ход», при котором поддерживается равная скорость вращения на протяжении всей работы асинхронного генератора.

Как сделать самому

Купить асинхронный генератор – это дорогое удовольствие, тем более что можно его сделать самостоятельно. Принцип работы прост, главное – обеспечить себя необходимыми инструментами.

  1. Согласно принципу действия устройства, Вам нужно настроить генератор так, чтобы скорость его вращения была выше, чем обороты двигателя. Для этого подключаем электродвигатель к сети и заводим его. Чтобы вычислить скорость вращения двигателя, нужно использовать тахогенератор или тахометр;
  2. К полученному значению нужно добавить 10 %. Скажем, технические характеристики двигателя 1200 об/мин, значит, генератор должен иметь 1320 об/мин (1200 * 0,1 % = 120, 120 + 1200 = 1320 об/мин);
  3. Далее, переделка асинхронного двигателя в генератор включает в себя подбор необходимой емкости для используемых конденсаторов (каждый конденсатор между фазами аналогичен предыдущему);
  4. Следите за тем, чтоб емкость не была слишком большой, иначе асинхронный генератор будет нагреваться;
  5. Подбираете конденсаторы, необходимые для обеспечения определенной скорость вращения, расчет которой производился выше. Их установка требует особенной внимательности, очень важно, чтобы они были изолированы при помощи специальных покрытий.

На этом обустройство генератора на базе двигателя окончено. Теперь его можно устанавливать как источник энергии. Важно помнить, что устройство с короткозамкнутым ротором производит довольно высокое напряжение, поэтому если Вам нужен показатель 220 В, есть резон установить понижающий трансформатор.

Схема включения двигателя в качестве генератора

Вот так выглядит схема, как сделать ветрогенератор из асинхронного двигателя, здесь основные отличия заключаются в скорости вращения и в принципе включения. Как пример, представляем Вам схему ветряной ГЭС, которую включает асинхронный бензиновый генератор.

Схема ветрогенератора на основе асинхронного двигателя

При этом нужно отметить, что он не работает с самозапиткой, в большинстве случаев, для включения такого генератора используется специальный мотоблок или блок управления по типу замка зажигания.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

Часть 3

Часть 4

Часть 5

Часть 6

В качестве генератора с небольшой мощностью, можно применять даже однофазные асинхронные двигатели от бытовых электроприборов – стиральных машин Geko, дренажных насосов и т. д. Как и двухопорный двигатель, мотор от таких устройств нужно подключать параллельно их обмотке. Еще один способ – это использовать конденсаторы сдвига фазы.

Они не всегда отличаются нужной мощностью, поэтому нужно будет её увеличить до необходимых показателей. Такой простой генератор можно будет использовать для питания лампочек или модемов. Если немного переделать схему, то Вам удастся подключить этот автономный прибор даже к обогревателю или электрической печке.

Также можно сделать подобный генератор на постоянных магнитах.

Фото – маломощный генератор

Советы по эксплуатации

  1. Любой асинхронный генератор (бензогенератор, электрический, бесщеточный) считается устройством с повышенный уровнем опасности, поэтому постарайтесь его изолировать;
  2. Каждый автономный генератор обязательно должен быть оснащен дополнительными измерительными устройствами, чтобы фиксировать данные о его работе. Это должен быть частотометр или тахометр, а также вольтметр;
  3. Желательно обустроить генератор кнопками включения и выключения;
  4. Данный тип электрогенератора, в обязательном порядке, заземляется;
  5. Будьте готовы к тому, что КПД асинхронного генератора будет падать на 30, а иногда и на 50 % – это явление неизбежно при преобразовании механической энергии в электрическую;
  6. Заменить устройство при необходимости могут синхронные бесщеточные генераторы типа ГС-200 или ГС-250, асинхронные АИР 63, ЕСС 5-93-4у2 (75 кВт), и прочие, цена которых от 30 000 рублей в Красноярске и от 35 000 в Москве;
  7. Очень важен тепловой режим асинхронного генератора. Как и ДВС он может нагреваться от холостого хода, следите за температурой устройства.

Источник: https://www.asutpp.ru/asinxronnyj-generator.html

Ссылка на основную публикацию
Adblock
detector