Реверс однофазного конденсаторного двигателя – советы электрика

реверс однофазного двигателя с конденсатором и пульт ДУ

Это несложное цифровое устройство было разработано для управления однофазным асинхронным электродвигателем типа 6АЕ80 номинальной мощностью 1100 Вт.

Одним из условий было наличие проводного пульта дистанционного управления с кабелем длиной 5 – 6 метров, небольшой вес пульта и низковольтное управление (для электробезопасности оператора). Устройство можно использовать с любым однофазным асинхронным электродвигателем, но следует учитывать мощность мотора.

Для более мощных двигателей, возможно, потребуется применение в схеме электромагнитных реле, способных коммутировать больший ток.   

Электродвигатель 6АЕ80

Чаще всего электрики делают подобные устройства на основе электромагнитных пускателей, представляющих собой практически мощные электромагнитные реле с обмотками на 220 вольт. Например, распространенных контакторах типа ПМЛ-1100. Это самое распространенное решение, но с точки зрения наших целей оно имеет ряд недостатков.

Обратите внимание

Первое – это большие габариты устройства на электромагнитных контакторах, и второе – это необходимость тянуть к пульту управления (кнопочному пульту) силовые провода большого сечения, по которым течет сравнительно большой ток и присутствует опасное высокое сетевое напряжение 220 вольт.

Ниже на картинке – фото одного из таких устройств (найдено в интернет):
      

Видим что такое устройство по размерам сопоставимо с размерами самого электродвигателя.Я решил разработать небольшое по габаритам устройство с цифровым управлением на недорогом 8-пиновом микроконтроллере PIC12F629.

Применение микроконтроллера позволило реализовать управление двигателем всего двумя кнопками (вместо обычных трех кнопок в реверсе на пускателях).

При этом оператору не нужно думать об остановке двигателя перед сменой направления вращения – об этом заботится программа, “зашитая” в микроконтроллер.    

На фотографии – мой пульт управления двигателем. С блоком контроллера пульт соединяется мягким качественным кабелем длиной 6 метров (При необходимости длину кабеля можно увеличить). Применен микрофонный кабель с двумя жилами и экраном.

Кабель имеет диаметр 6 мм (по изоляции) Такой кабель применяется ы звукотехнике для подключения микрофонов. В принципе можно использовать любой трехжильный провод.

Я применил микрофонный, так как он качественный, стойкий к изгибам и обрывам, так как рассчитан на использование в “экстремальных” условиях живых концертов.   

Микрофонный кабель (один из вариантов)

Пульт управления имеет две кнопки. Зеленая кнопка – вращение вперед, красная кнопка – реверс, то есть вращение в обратную сторону (следует учесть, что направления вращения – условные). Если двигатель остановлен, то нажатие на любую из кнопок запускает двигатель в соответствующем направлении.

Важно

Если во время вращения мотора нажать на любую из кнопок, то происходит выключение двигателя. На корпусе пульта управления есть кольцо, предназначенное для того, чтобы пульт можно было повесить на стену или на шею оператора (желание заказчика). Двигатель используется с редуктором, в станке для гибки труб.

Корпуса пульта управления и самого контроллера разработаны в программе 3D моделирование SolidWorks и напечатаны на 3D принтере.  

  Корпус кнопочного пульта (слева) и контроллера (справа), распечатанные на 3D принтере.   Контроллер управления, закреплённый на пластиковой крышке распределительной коробки двигателя 6АЕ80.   

Изменение направления вращения однофазного асинхронного двигателя.Существует несколько разновидностей асинхронных однофазных электродвигателей. В этой статье идет речь о двигателях с конденсаторным пуском.

такой электродвигатель имеет две обмотки – рабочую (Р.О.) и пусковую (П.О.). рабочая обмотка включается в сеть 220 вольт напрямую, а пусковая – через специальн6ый пусковой конденсатор.

Конденсатор позволяет создать сдвиг фаз переменного тока в пусковой обмотке относительно тока в рабочей обмотке. 

На этой схеме (и в распределительной колодке нашего двигателя 6АЕ80) начало и конец рабочей обмотки обозначены как U1 и U2, а начало и конец пусковой обмотки – Z1 и Z2.

Для того, чтобы изменить направление вращения достаточно поменять местами начало и конец любой из обмоток. Обычно используется реверс по рабочей обмотке, однако совершенно все равно, начало и конец какой обмотки менять между собой.

Мы будем менять между собой выводы рабочей обмотки, то есть U1и U2. Итак, схема для реверсивного включения будет выглядеть следующим образом:
   

Следует иметь в виду, что изменение направления вращения такого двигателя возможно только в момент его старта. При этом якорь двигателя должен быть неподвижен.

Если переключить обмотку и подать питание на мотор, не дождавшись остановки вращения его якоря, то двигатель запустится в том же направлении, в котором он вращался до этого, не зависимо от включения обмотки.

   Принципиальная схема контроллера управления двигателемПечатная плата разведена в программе DipTrace, поэтому принципиальная схема нарисована также в схемном редакторе DipTrace. Для того, чтобы увеличить схему, кликните на ней мышкой:
  В данной схеме всем рулит микроконтроллер PIC12F629. Это небольшая микросхема в 8-выводном корпусе.

Совет

Микроконтроллер настроен для работы от внутреннего (встроенного) генератора частотой 4 МГц, поэтому дополнительный кварцевый резонатор здесь не нужен. Для управления двигателем используются два порта микроконтроллера. Порт GP4 (вывод 3) управляет электромагнитным реле (К1) включения и выключения питания двигателя.

Направление вращения переключает реле (К2), управляемое портом GP5 (вывод 2)  микроконтроллера. Микроконтроллер управляет обмотками реле через ключи на сравнительно мощных транзисторах  Q1 и Q2. Эти транзисторы необходимы, так как выходной порт микроконтроллера не может обеспечить ток, достаточный для включения электромагнитного реле.

Катушки электромагнитных реле включены в коллекторные цепи транзисторов Q1 и Q2. Диоды, вколоченные параллельно катушкам реле катодом к плюсу питания и анодом к коллектору транзистора, защищают переходы транзисторов от индукционных бросков напряжения, возникающего в обмотках в момент срабатывания реле.

Для отслеживания нажатий на кнопки управления задействованы порты микроконтроллера GP0 и GP1 (выводы 7 и 6). Эти выводы настроены как входы и подтянуты к источнику питания +5В через резисторы R5 и R6 сопротивлением 1 кОм. Сами кнопки на схеме не показаны, так как схема рисовалась для разводки печатной платы, а кнопок на печатной плате нет, они устанавливаются в пульт ДУ. Кнопки подключаются к контактам платы BTN_FWD (кнопка ВПЕРЕД), BTN_REV (кнопка НАЗАД) и к контакту GND (земля):

  Схема пульта дистанционного управления  На корпусе контроллера установлены три светодиода, которых нет на схеме и печатной плате. Дело в том, что установить светодиоды я решил уже когда собрал контроллер. первый, синий светодиод светится когда включено питание (+5В) контроллера. Второй светодиод, красный, светится когда срабатывает реле, коммутирующее направление вращения (K2). Третий светодиод, зеленый, светится когда двигатель включен, то есть на него подано питание 220В.Если вы хотите установить светодиоды, схема их включения показана ниже. Также, при желании вы сможете модифицировать печатную плату контроллера, все файлы вы найдете в конце этой статьи. Мне дорабатывать плату было лень и я просто допаял три резистора навесным монтажом а сами светодиоды закрепил в отверстиях на корпусе контроллера при помощи небольшого количества цианоакрилата (суперклей).

Схема подключения светодиодов

Питание контроллера

. В качестве источника питания этого контроллера я использовал обычный импульсный адаптер для смартфона с выходным напряжением 5 В. Для работы контроллера достаточно, чтобы адаптер обеспечивал выходной ток в районе 500 – 600 мА. Мой адаптер оказался рассчитанным на 2 А. Единственная доработка адаптера – это замена micro USB разъема на обычный штекер питания, вот такой (папа):  такой разъем более надежен и практичен чем micro USB. На корпусе контроллера я установил ответную часть – гнездо “мама”    Можно купить готовый адаптер на 5 В с таким штекером. У нас в магазинах радиотоваров такой адаптер на максимальный ток 2 А стоит примерно 200..250 рублей. Если у вас в хозяйстве есть небольшой сетевой трансформатор с напряжением на вторичной обмотке в районе 9 – 14В, вы можете собрать блок питания по классической схеме:   
Но я думаю, что покупной импульсный адаптер – более дешевый и главное “быстрый” вариант.  Можно также такой адаптер заказать в Китае, на Алиэкспресс:

Печатная плата

.

Печатная плата разведена в программе DipTracе. Бесплатную версию программы на 400 пинов вы можете скачать на официальном сайте. Ее функционала вполне достаточно для такой платы.

Ниже во фрейме вы видите трехмерное изображение печатной платы. Нажав на кнопку “плэй” в центре изображения, вы сможете “покрутить” плату в виртуальном 3D пространстве и подробно её рассмотреть:
    

Контроллер управления асинхронным двигателем by shantidas on Sketchfab

       

Интерактивный 3D просмотр

.
Кликните в центре изображения, дождитесь загрузки 3D модели. Крутить: левая кнопка мыши; Размер: колесо мыши.       Большие контактные площадки над двумя оранжевыми реле – это высоковольтная часть платы. В центре этих круглых пинов я просверлил отверстия диаметром 3 мм, и с помощью крепежа на M3 (винт – гайка – шайба – шайба – гайка) закрепил провода от электродвигателя и от сети 220 вольт. Можно конечно просто эти провода припаять, если вам лень возиться с крепежом. При соединении высоковольтной части платы нужно соблюдать аккуратность и внимательность, чтобы не допустить замыкания по высоковольтным цепям.
      

Читайте также:  Расчет мощности электродвигателя по току - советы электрика

Печатная плата – односторонняя. На ней есть три перемычки. Одна перемычка находится на низковольтной части платы (справа от резисторов R4 и R2). Она выполнена отрезком монтажного провода. Две другие перемычки находятся в высоковольтной части платы.

Для их создания необходимо кусками изолированного провода сечением не менее 1 мм соединить точки на плате: A1 с A2 (первая перемычка)  и B1с В2.

Будьте внимательны, в этих точках действует напряжение сети и через эти провода течет ток электродвигателя. Поэтому не используйте здесь тонкий провод

      

Подключение электродвигателя к плате

Подключение электродвигателя несложно, но повторяю, здесь нужно быть очень внимательным и проверять всё несколько раз, так как ошибка может вызвать замыкание и “бабах!!!”, так как вы работаете с напряжением сети 220В.

Для успешного подключения электродвигателя из его корпуса в распределительную коробку должны быть выведены все 4 провода, то есть начало-конец рабочей обмотки и начало-конец стартовой обмотки. В некоторых двигателях общая точка соединения обмоток двигателей находится внутри корпуса и выведен просто один общий провод.

такой двигатель подключить с реверсом не получится. У нашего двигателя 6АЕ80 все 4 конца выведены из корпуса а монтаж изначально сделан на трех-контактной монтажной колодке внутри распределительного отсека.Синий и коричневый провода ведут к пусковому конденсатору. Оставим их как есть. первое что нужно сделать, это отсоединить от схемы провода рабочей обмотки.

В данном моторе они промаркированы U1 и U2. Их нужно отсоединить, удлинить дополнительными кусками провода (сечением 1.5 – 2 мм) и вывести наружу через “штуццер”, пометив как U1 и U2.

Обратите внимание

еще два куска такого же провода соединяем к колодке на место, куда были прикручены концы рабочей обмотки ( на фото это – левый и средний винты контактной колодки) и выводим тоже наружу, помечая как KU1 и KU2 (Колодка-U1 и Колодка-U2). Эти 4 провода соединяем с одноименными контактами на высоковольтной части печатной платы (за реле).

Схема подключения мотора к плате контроллераТолстыми линиями показаны провода, которые нужно добавить. Тонкие линии – то что внутри мотора. Сеть 220 вольт подключаем к контактам 220-1 и 220-2 на плате контроллера.Детали контроллераD1, D2 – диоды 1N4001Все резисторы мощностью 0.125 – 0.25 Вт с номиналами, указанными на схеме.

Конденсатор C1 – керамический на 0.1 мкФКонденсатор С2 – электролитический на 47 мкФ 16Вдве нормально разомкнутые кнопки для пульта (я купил подходящие в радиомагазине по 15 рублей)Внимание! Для управления двигателями большей мощности потребуются реле, способные коммутировать больший ток. Такие реле могут быть больших габаритов и из придется монтировать отдельно.   

Программа для микроконтроллера

Прошивка для микроконтроллера PIC12F629 написана на языке Си в среде MikroC Pro For Pic. Для прошивки микроконтроллера вам потребуется любой из программаторов, способных прошивать микроконтроллеры PIC.Программа (прошивка) для микроконтроллера с исходными кодами
Сама прошивка – это файл Revers_12F629.hex
также в архиве найдете проект для симуляции в Proteus. Это файл Reves12F6298.pdsprj

Проект печатной платы в формате DipTrace и 3D модели для печати корпусов контроллера и кнопочного пульта
Видео об изготовлении этого устройства. Часть 1        Видео об изготовлении этого устройства. Часть 2

Источник: https://musbench.com/e_differ/revers_motor.html

Устройство и подключение однофазных электродвигателей 220В

Однофазные электродвигатели 220В широко используются в разнообразных бытовых и промышленных устройствах: холодильниках, стиральных машинах, насосах, дрелях, заточных и подобных им обрабатывающих станках. Их технические характеристики несколько уступают свойствам трехфазных двигателей. Существует два наиболее распространенных типа однофазных электродвигателей для сети переменного тока промышленной частоты:

  • асинхронные;
  • коллекторные.

Первые более просты по своему устройству, но обладают рядом недостатков, главные из которых – трудности с изменением направления и частоты вращения ротора.

Далее рассмотрены однофазные асинхронные электродвигатели и коллекторные двигатели переменного тока.

Однофазные асинхронные электродвигатели

Устройство и принцип действия

Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор – это обычно короткозамкнутая обмотка («беличья клетка») – медные или алюминиевые стержни, замкнутые с торцов.

Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) – оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.

Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.

По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.

Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие – сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.

Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов – 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.

При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие – возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.

Схема запуска и подключения

Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.

Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.

Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:

  • с пусковым конденсатором (рис. а);
  • с пусковым и рабочим (рис. б);
  • только с рабочим конденсатором (рис. в).

Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются.

Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки.

Важно

Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).

Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового – в 2,5 раза больше.

Коллекторный двигатель переменного тока

Рассмотрим коллекторный двигатель переменного тока. Универсальные коллекторные электродвигатели могут питаться от источников как переменного, так и постоянного тока. Они часто используются в электроинструментах, швейных и стиральных машинах, мясорубках – там, где нужен реверс, регулировка частоты вращения ротора или его вращение с частотой более 3000 об/мин.

Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/ustrojstvo-i-podklyuchenie-odnofaznyx-elektrodvigatelej-220v.html

Реверс электродвигателя

Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что ликвидируется паразитное намагничивание, вызывающее перегрев и потерю мощности электрической машиной.

Кроме того, схемы реверсивного пуска намного проще, чем механические трансмиссии, состоящие из системы зубчатых шестерней. Наибольшее число вопросов вызывает способ изменения направления вращения двигателей переменного тока, ведь изменить полярность питающего напряжения невозможно.

Читайте также:  Прозвонка проводов мультиметром - советы электрика

В этой статье мы представим вам основные схемные решения для запуска асинхронных и коллекторных электродвигателей, в которых предусмотрена возможность их реверсирования.

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником.

Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее.

Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6.

Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей.

Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

Подробнее о схемах подключения магнитных пускателей для  трехфазных электродвигателей читайте здесь.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

  • Сетевое напряжение подается на клеммы W2 и V1.
  • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
  • Концы второй обмотки подключают к клеммам W2 и V2.
  • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
  • Клемма W1 остается свободной.

Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

Реверс коллекторных двигателей

Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется.

Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря.

Совет

Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

  1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
  2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.

Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

Источник: https://electriktop.ru/baza-znaniy/revers-elektrodvigatelya.html

Подключение трехфазного двигателя к однофазной сети: схемы соединения обмоток и конденсаторы, емкость, реверс

Подключение трёхфазного двигателя к однофазной цепи может потребоваться просто потому, что другого нет под рукой, или нужно сэкономить, или просто захотелось смастерить что-то своими руками из старых запасов.

Тем более асинхронники (это практически все 3-фазные электромоторы, могущие встретиться на жизненном пути Самоделкина) имеют одно очень важное конструкционное преимущество: у них нет электрических щёток — лишней расходной детали.

380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи.

В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.

Возникает вопрос о том, где взять недостающие фазы.

Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.

То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220.

Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.

В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты

  1. Три клеммы ОДНОГО ряда соединены между собой — звезда.
  2. МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.

Какую схему соединения обмоток выбрать

Читаем информацию о рабочем напряжении на табличке:

  • 380В — только треугольник.
  • 380В/220В — треугольник или звезда.
  • 220/127 — только звезда. Очень редкий вариант.

Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.

Подбираем конденсатор

В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами.

Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.

Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.

  • Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.
Читайте также:  Как сделать удлинитель своими руками - советы электрика

Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF.

Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть.

Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.

А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий.

Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий.

Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.

В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.

Подсчет итоговой ёмкости

При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений.

Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF.

Всё зависит от типа их соединения между собой.

Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.

Реверс

Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.

Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.

А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.

Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-trehfaznogo-dvigatelya-k-odnofaznoy-seti.html

Подключение коллекторного двигателя переменного тока

 Уважаемые посетители!!!

Мы вновь возвращаемся в мир занимательного —  как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.  

Подключение однофазного коллекторного двигателя — переменного тока

В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта.   Электрическая схема рис.

1  дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя. 

рис.1

Кто разбирал из нас бытовые  потребители электроэнергии как:

и далее, со мной согласятся, что для  электрической схемы рис.1 недостает еще одного элемента — конденсатора.   Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель.

   Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора.    Соответственно мы пришли к выводу, что конденсатор  непосредственно должен состоять в последовательном соединении с пусковой обмоткой.

Обратите внимание

     Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками  статора, где  сопротивление на каждой обмотке будет принимать свое значение рис.2.  

рис.2 

В зависимости от типов асинхронных  двигателей и их применения рис.3,  существуют следующие схемы подключения к однофазной сети:

рис.3

а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;

б) емкостной сдвиг фаз с пусковым конденсатором;

в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;

г) емкостной сдвиг фаз с рабочим конденсатором.

В схемах указаны следующие обозначения:

  • Ср — рабочий конденсатор;
  • Сп — пусковой конденсатор.

Перед подключением коллекторного однофазного двигателя, необходимо определить:

обмотки статора.   Конденсатор,  с  его номинальными значениями по емкости и напряжению, и  соответствующими данными для определенного типа двигателя,  следует подключать к пусковой обмотке статора — последовательно.   Сопротивление обмоток статора принимает следующие средние значения:

  • рабочая обмотка 10-13 Ом;
  • пусковая обмотка 30-35 Ом;
  • общее сопротивление обмоток 40-45 Ом,

— для некоторых видов бытовой техники.   Выполняя замеры сопротивлений на выводах проводов обмоток статора   можно определить пусковую обмотку с ее средним значением.    То-есть,  сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.

Управление коллекторным двигателем — без реостата

Для управления коллекторным двигателем — без реостата, вполне подойдет пакетный переключатель, с помощью которого осуществляется переключение контактной группы —  в  переключателе рис.4. 

рис.4

В этом примере, в зависимости от переключения позиции,  будет изменяться направление вращения ротора электродвигателя, работа осуществляется с  постоянной скоростью и оборотами двигателя, изменяется только полярность обмоток статора.

переключатель кулачковый пакетный

Для управления скоростью вращения ротора электродвигателя,  можно воспользоваться симисторным регулятором скорости вращения.   Данное электроустановочное изделие как и все остальные, подбирается с учетом номинальных значений по силе тока и напряжению,  — учитывается подключаемая нагрузка мощность потребителя электрической энергии.

рис.5

Мощность потребителя, как наглядно видно из формулы рис.5,  это произведение силы тока и напряжения.   Для чего вообще необходимо проводить преварительные вычисления?   Нагрузка, как известно нам, подключается через автомат защитного отключения.   Чтобы установить и подключить автомат защитного отключения, принимается во внимание расчет по силе тока нагрузки рис.6.

рис.6

симисторный регулятор скорости вращения электродвигателя

В кратце, чтобы представить —  что из себя представляет симисторный регулятор,  опять-же нужно вспомнить основы электроники.    Симистор, состоящий в схеме управления, выполняет функцию регулирующего элемента — для питания электродвигателя рис.7.

 рис.7

На рисунке показаны выводы симистра:

При поступлении импульса на вход G — симистор открывается рис.8,  то-есть,  выполняет роль электронного ключа — для питания электродвигателя.

На фотоснимке показано изображение электронного модуля управления.   Электронный модуль управления встречается в стиральных машинах-автомат, работающих в заданом, автоматическом режиме.

электронный модуль управления стиральной машины индезит

 Подключение коллекторного двигателя — через реостат

 рис.9

В этом схематическом изображении рис.9 показано подключение нагрузки к выводным клеммам генератора через реостат.   Нагрузкой здесь является электрическая лампа накаливания.

   Реостат в электрической схеме состоит в последовательном соединении, нагрузка лампочка соединена в схеме параллельно.

   Таким-же образом, вместо данной нагрузки можно подключить коллекторный двигатель, работающий от источников электрической энергии, таких как:

  • генератор переменного тока;
  • генератор постоянного тока

либо от внешнего источника энергии, то-есть, от электрической сети.   При подключении коллекторного двигателя нужно принимать во внимание электрическую схему обмоток статора, тип двигателя, как допустим для следующей схемы рис.10.

 рис.10

Электрическая схема представляет из себя схему универсального коллекторного двигателя, где двигатель может работать как от переменного так и от постоянного тока.

В свое время мною было изготовлено определенное количество электрических наждаков, электрические двигатели монтировались на платформу с последующим подключением, на вал ротора закреплялась насадка для установки наждачного круга, поэтому, в своей практике приходилось подключать различные типы электродвигателей.

 наждачный круг

Приведенный пример по электрическим наждакам, — тема довольно-таки тоже занимательная и полезная для наших бытовых нужд. 

Важно

  Остается пожелать Вам успешного проведения ремонта для различных видов  бытовой техники.

Источник: http://zapiski-elektrika.ru/prohee/podklyuchenie-kollektornogo-dvigatelya-peremennogo-toka.html

Ссылка на основную публикацию
Adblock
detector