Как рассчитать пусковой ток двигателя – советы электрика

Как рассчитать пусковой ток

28.03.2018

Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:

  • проблемы с другими подключенными к сети приборами;
  • более скорый износ узлов самого двигателя (этому способствует рывок при запуске).

Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.

Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):

  • 1000PH/(ηHUH) для двигателей постоянного тока;
  • 1000PH/(UHcosφH√ηH) для устройств переменного тока.

Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.

Способы уменьшения пускового тока

Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:

  • софтстартеров и устройств плавного пуска;
  • автоматических выключателей соответствующего типа отключения (B, D или C).

Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.

Источник:

Пусковые токи асинхронных электродвигателей | Полезные статьи — Кабель.РФ

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

Рисунок 1.

Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения).

Обратите внимание

Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи.

Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты.

Расчет пускового тока асинхронного электродвигателя

Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

Источник:

Расчет возможности пуска электродвигателя 380 В

Раздел: Электрооборудование

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.

Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.

Важно

Режим пуска двигателя рассматривается при максимальной нагрузке линии, так как именно при таких условиях создаются наиболее неблагоприятные условия для работы присоединенных к сети приемников.

Чтобы проверить можно ли включать двигатель, нужно рассчитать напряжение на его зажимах во время пуска и напряжение на любом другом работающем двигателе, а также проверить напряжение у ламп.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА.

От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м.

К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

где:

  • • Ммакс/Мн – кратность максимального момента;
  • • Мп/Мн – кратность пускового момента;
  • • Мн – номинальный момент двигателя;

Расчет:

1. Определяем длительно допустимый ток двигателя Д1:

2. Определяем пусковой ток двигателя Д1:

где: • Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

Совет

где: • Rв и Хв – сопротивления сети со стороны высшего напряжения; • n = 6/0,4 =15 – коэффициент трансформации понижающего трансформатора.

Читайте также:  Как работает трансформатор - советы электрика

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

Rс = Rн*L = 0,002*0,85 = 0,0017 Ом;

Хс = Хн*L = 0,000355*0,85 = 0,0003 Ом;

Rт = 9,7*10-3 = 0,0097 Ом;

Хт = 25,8*10-3 = 0,0258 Ом;

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

Rш = Rс + Rт = 0,0017 + 0,0097 = 0,0114 Ом;

Хш = Хс + Хт = 0,0003 + 0,0258 = 0,0261 Ом;

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

R1 = R0*L = 0,329*0,08 = 0,026 Ом;

Х1 = Х0*L = 0,06*0,08 = 0,0048 Ом;

где:
• R0 = 0,329 Ом/км и Х0 = 0,06 Ом/км -значения активных и реактивных сопротивлений кабеля определяем по таблице 2-5 [Л2.с 48].

9. Определяем суммарное сопротивление линии от подстанции 2РП-1 до зажимов двигателя:

Rд = Rш + R1 = 0,0114 + 0,026 = 0,0374 Ом;

Хд = Хш + Х1 = 0,0261 + 0,0048 = 0,0309 Ом;

10. Определяем коэффициент Ад по формуле [Л1, с 14]:

где: • cosφ = 0,3 и sinφ = 0,95 средние значения коэффициентов мощности при пуске двигателя, принимаются при отсутствии технических данных, согласно [Л1. с. 16].

11. Определяем напряжение на зажимах двигателя Д1 по формуле [Л1, с 14]:

где: • U*ш = Uш/Uн = 380/380 =1 – относительное напряжение на шинах распределительного пункта, во многих случаях его можно принять равным 1; • Iп – пусковой ток двигателя;

Обратите внимание

12. Проверяем сможет ли двигатель Д1 развернуть присоединяемый механизм нанос центробежный 1Д315-71а:

где:• mп=Мпуск/Мном = 1,2 – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (выбирается по каталогу на двигатель);

• mп.

12.

1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д315-71а Рн.мех. = 80 кВт, к номинальной мощности двигателя 90 кВт:

Источник: https://novpedkolledg2.ru/bez-rubriki/kak-rasschitat-puskovoj-tok.html

Определение возможности пуска электродвигателя

При проектировании иногда необходимо выполнять проверку на возможность запуска короткозамкнутого двигателя при заданных параметрах электрической сети. Лучше предусматривать устройство плавного пуска или частотный преобразователь, но электромагнитный пускатель дешевле.

Методика проверки сводится к оценке  снижения напряжения от трансформатора до электродвигателя.

Проблема заключается в том, что при пуске у двигателя возникает пусковой ток, который в 4-8 раз больше номинального тока.

Пусковой ток создает дополнительную потерю напряжения в сети, а это может привести к тому, что двигатель будет не в состоянии провернуть вал с нагрузкой, поскольку развиваемый двигателем вращающий момент изменяется пропорционально квадрату напряжения. Кроме этого, в результате резкого падения напряжения могут остановиться другие электродвигатели, питающиеся от этой сети.

Нормальный пуск двигателя, возможен в том случае, если начальный момент электродвигателя будет больше на 10% пускового момента сопротивления приводимого механизма.

Чтобы выполнить проверку запуска двигателя, достаточным условием является сравнение пусковых (начальных) моментов электродвигателя и приводимого механизма.

Условие пуска двигателя

где – напряжение на клеммах электродвигателя в начальный момент пуска в долях от номинального напряжения;

mп=Мпуск/Мном – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (по каталогу);

mмех=Ммех/Мном –требуемая кратность пускового момента приводимого механизма;

Кз – коэффициент загрузки электродвигателя;

1,1 – коэффициент запаса;

dUдоп% — дополнительные потери напряжения (%) в сети от питающего трансформатора и в трансформаторе до клемм электродвигателя механизма;

Кi – кратность пускового тока при номинальном напряжении на клеммах электродвигателя (по каталогу);

Iномд – номинальный ток электродвигателя (по каталогу), А;

Uном – номинальное напряжение трансформатора;

rтр, xтр – активное и индуктивное сопротивление трансформатора, отнесенное к обмотке низшего напряжения;

r, x – активное и индуктивное сопротивление кабельной линии;

cosfном – номинальное значение коэффициента мощности;

mп=Мпуск/Мном – кратность пускового (начального) момента электродвигателя (по каталогу);

sном – номинальное скольжение;

dUс% —  суммарная потеря напряжения в линии от шин питающего трансформатора до двигателя механизма и в трансформаторе без учета пуска двигателя (%);

dUс=0,08Uном – при отсутствии данных мощности трансформаторов и их загрузке;

При определении mмех можно руководствоваться следующими данными:

Вентиляторы – 04-0,5.

Компрессоры центробежные и поршневые –  0,4.

Насосы центробежные и грузовые – 0,4.

Станки металлообрабатывающие – 0,3.

Лифты – 1,7-1,8.

Другие электродвигатели будут устойчиво работать, при снижении напряжения от пуска другого электродвигателя, если максимальные моменты  останутся больше моментов приводимых механизмов.

Работа другого двигателя

mmax=Мmax/Мном – кратность максимального момента электродвигателя (по каталогу).

Подставляя значения в эти формулы, мы узнаем, выдержит ли питающая сеть с трансформатором пуск двигателя, а также можно проверить, не отключится ли в этот момент другой работающий двигатель.

В ближайшее время планирую на основе этих формул создать программу для быстрой проверки пуска электродвигателя. Двигатели малой мощности нет смысла проверять. Где-то упоминалось отношение мощности трансформатора к мощности двигателя, при котором должна выполняться  данная проверка (найду напишу).

Важно

На форуме я выкладывал программу по проверке возможности пуска двигателя, но там какие-то проблемы со шрифтами. Возможно у вас получится ее запустить, поскольку она сделана под DOS.

Источник: http://220blog.ru/pro-raschet/opredelenie-vozmozhnosti-puska-elektrodvigatelya.html

Как подобрать автоматический выключатель для двигателя

Правильный подбор автоматического выключателя для защити электродвигателя имеет огромное значение для оборудования. Надежность работы, защита двигателя от аварийных режимов работы и проводки  напрямую зависит от подбора автоматического выключателя.

В этой статье наведем условия выбора автоматического выключателя для защиты электродвигателя. Для того чтобы выбрать автоматический выключатель необходимо знать:

— номинальный ток двигателя;

— кратность пускового тока к номинальному;

— максимально допустимый ток электропроводки.

Номинальный ток двигателя – это ток который имеет электродвигатель во время работы при номинальной мощности. Он указывается  на паспорте электродвигателе или берется с таблиц паспортных данных электродвигателей.

Кратность пускового тока к номинальному – это соотношение пускового ток который возникает в электродвигателе во время пуска к номинальному. Он тоже указывается на паспорте электродвигателя или в таблицах электродвигателей.

Максимально допустимый ток электропроводки – это допустимый ток, который может проходить по проводу, кабеля, что подключен к электродвигателю.

Условия для правильного выбора автоматического выключателя для защиты электродвигателя:

— номинальный ток автоматического выключателя должен бить больше или равен номинальному току электродвигателя.  Например: ток электродвигателя АИР112М4У2 Ін. дв. =11,4А выбираем автоматический выключатель ВА51Г2534 на номинальный ток Ін. = 25А и ток расцепителя Ін..рас. = 12.5А.

После этого проверим автоматический выключатель на не срабатывания при пуске электродвигателя используя  условие :

Iу.е.>kзап. · kр.у ·kр.п. ·Iн.дв ·kі

где Kзап . — коэффициент запаса, который учитывает колебания напряжения, Kзап . = 1,1 ;

kр.у — коэффициент, который  учитывает неточность вставки по току срабатывания электромагнитного расцепителя автоматического выключателя , Kр.у = 1,2 ;

Читайте также:  Принцип действия узо в однофазной сети - советы электрика

kр.п. — коэффициент, который учитывает возможное отклонение пускового тока от его номинального, kр.п. = 1,2 ;

K і — каталожная кратность пускового тока электродвигателя;

Iн.дв — номинальный ток двигателя , А.

Iу.е = 14 · Iн.рос = 14 · 12,5 = 175А

З таблицы электродвигателей находим K і  = 7,0 для электродвигателя АИР112М4У2.

Подставляем в условие и определяем

175А > 1,1·1,2·1,2·7,0·11,4

175А > 126,4А

Условие выполнилось, следовательно,  автоматический выключатель не сработает при запуске двигателя.

— номинальный ток автоматического выключателя должен быть меньше предельно допустимого тока кабеля которым питается электродвигатель. Например: подключение сделано кабелем АВРГ (3х2,5) который имеет допустимый   ток Iдоп =27А. Для водного автомата для защиты электродвигателя условие выполняется потому, что Iдоп =27А > Ін. = 25А .

В этой статье вы узнали как правильно, используя условия выбора правильно подобрать автоматический выключатель для защиты электродвигателя.

Источник: http://camcebemacter.ru/kak-podobrat-avtomaticheskij-vyklyuchatel-dlya-dvigatelya/

Пусковые токи

Вы хотите, чтобы стабилизатор напряжения, источник бесперебойного питания или генератор служили безотказно? Тогда эта статья будет для вас полезна.

Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.

Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.

В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка.

Совет

Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в 2–7 раз. Такое явление обусловлено наличием пусковых токов.

Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания.

В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе. Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.

Мощность любого прибора рассчитается как произведение напряжения (в вольтах) и силы тока (в амперах).

По мере увеличения силы тока растет мощность, а значит, возрастает нагрузка на стабилизатор, генератор и источник питания.

Определение пусковых токов можно сформулировать так: электроприборы или их элементы, имеющие инерционные свойства, в момент запуска дают большую нагрузку на электрическую сеть или питающий прибор, чем в процессе работы.

Значение пусковых токов зависит не только от усилия по раскрутке ротора двигателя или насоса до номинальных оборотов, но и от изменения сопротивления проводника. Чем меньше сопротивление, тем больше величина силы тока, который может протекать по нему. При нагреве уменьшается сопротивление и снижается возможность проводника пропускать большие токи.

Помимо вращающего момента и электросопротивления дополнительную электрическую мощность в момент старта прибору придаёт индуктивная мощность. В момент включения люминесцентной лампы у индуктивной катушки сопротивление мало. Также действует мощность для поджига разряда, что увеличивает силу тока.

Влияние пусковых токов особенно важно для стабилизаторов напряжения и источников бесперебойного питания on-line типа. Стабилизаторы работают в одном из двух режимов работы: номинальном или предельном.

В номинальном режиме работы сохраняется мощность, но при ухудшении качества электроснабжения в сети наблюдается очень низкое или, напротив, очень высокое напряжение.

Обратите внимание

В таком случае стабилизатор переходит в предельный режим работы, его выходная мощность снижается примерно на 30 %. Если при этом происходит перегрузка по пусковым токам, то он выключится, сработает система защиты.

Если это будет повторяться часто, срок службы качественного стабилизатора будет небольшим (что уж говорить о китайской технике).

С ИБП типа on-line дела обстоят сложнее. Если на такой прибор дается нагрузка, превышающая номинальную (а у пусковых токов очень большая скорость, и они проходят любую защиту), предохранители не успевают сработать, и источник питания может сгореть. Это негарантийный случай и ремонт будет стоить значительных средств.

Единственный вид ИБП, который может выдерживать пусковые токи, в 2–3 раза превышающие номинал, — системы резервного электропитания линейно-интерактивного типа.

Максимальные пусковые токи дают компрессоры холодильников (однокамерные — до 1 кВт, двухкамерные — до 1,8 кВт), а также глубинные насосы. Их мощность во время запуска превышает номинал в 5–7 раз.

Самый маленький коэффициент запуска (равный 2) отмечается у насосов Grundfos с системой плавного пуска.

При выборе источников электроснабжения или стабилизатора напряжения нужно учитывать временной фактор влияния пусковых токов. При первом включении стабилизатора или генератора все электроприборы начнут работу одновременно и суммарная нагрузка будет большая.

При дальнейшей работе потребитель должен оценить вероятность одновременного запуска приборов с большими пусковыми токами (к примеру, холодильника, насоса и стиральной машины).

Если стабилизатор или ИБП имеет небольшую мощность, то следует самостоятельно контролировать включение техники с пусковыми токами.

Выводы:

  • При подсчёте суммарной мощности электротехники мощность приборов с пусковыми токами нужно рассчитывать не по номиналу, а с учётом пусковых токов (в Вт либо в А).
  • Пусковые токи даёт техника, в конструкции которой есть электродвигатель, насос, компрессор, нить накаливания или катушка индуктивности.
  • Чем хуже напряжение в магистральном проводе (ниже 150 В или выше 250 В), тем более высокий номинал должен быть у стабилизатора или ИБП (примерно на 30 % больше суммарной мощности работающей техники).

Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.

Примеры номинальной мощности и мощности при запуске бытовой техники

В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.

Источник: http://StabMart.ru/articles/puskovye-toki.html

Коэффициенты пусковых токов

В данной таблице приведены примерные значения номинальной и пусковой мощности популярных бытовых приборов и электроинструментов, а так же коэффициенты запаса мощности, которые следует учитывать при расчете мощности электростанции. Эта таблица поможет Вам в расчетах, но не забывайте, что лучше перед покупкой проконсультироваться со специалистом.

Коэффициенты пусковых токов, которые необходимо учитывать при подключении приборов:

Тип потребителя Номинальная мощность, Вт Мощность при пуске, Вт Требуемый коэффициент запаса мощности
Циркулярная пила 1100 1450 1,32
Дрель электрическая 800 950 1,19
Шлифовальная машинка или станок 2200 2800 1,27
Перфоратор 1300 1600 1,23
Станок или машинка для финишного шлифования 300 350 1,17
Ленточно-шлифовальная машина 1000 1200 1,2
Рубанок электрический 800 1000 1,25
Пылесос 1400 1700 1,21
Подвальный вакуумный насос 800 1000 1,25
Бетономешалка 1000 3500 3,5
Буровой пресс 750 2600 3,47
Инвертор 500 1000 2
Шпалерные ножницы 600 720 1,2
Кромкообрезной станок 500 600 1,2
Холодильник 600 2000 3,33
Фризер 1000 3500 3,5
Кипятильник, котел (Бойлер) 500 1700 3,4
Кондиционер 1000 3500 3,5
Стиральная машина 1000 3500 3,5
Обогреватель радиаторного типа 1000 1200 1,2
Лампа накаливания для освещения 500 500 1
Неоновая подсветка 500 1000 2
Электроплита 6000 6000 1
Электропечь 1500 1500 1
Микроволновая печь 800 1600 2
Hi-Fi TV – бытовая техника 500 500 1
Электромясорубка 1000 до 7000 (см. инструкцию) 7
Погружной водяной насос 1000 3500 3,5
Читайте также:  Ротор асинхронного двигателя - советы электрика

Если здание оснащено сложным оборудованием, таким как системы охраны, вентиляции, отопления и т.д., то для точного определения необходимой мощности электростанции лучше обратиться к профессионалам.

Специалисты Первого Генераторного Салона обследуют Ваш объект, проанализируют предоставленные данные, дадут оценку требуемой мощности, количества фаз, типу двигателя, а так же проконсультируют относительно ценовых категорий различных марок электростанций.

Источник: https://1gen.ru/articles/kojefficienty-puskovyh-tokov/

Автомат защиты электродвигателя – как правильно подобрать?

При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз.

Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален.

В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.

Задачи устройств для защиты электродвигателей

Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную.

Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки.

Важно

Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.

Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:

  • Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
  • Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
  • Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.

Управляющая и защитная автоматика для двигателя на видео:

  • Отключение установки, если нагрузка перестала подаваться на вал.
  • Защита силового агрегата от долгих перегрузок.
  • Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
  • Индикация рабочих режимов, а также оповещение об аварийных состояниях.

Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.

Расчет автомата для электродвигателя

Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом.

Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь.

Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.

Внутреннее устройство автомата защиты двигателя на видео:

Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.

Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.

Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.

Совет

Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.

Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).

Современные устройства электрозащиты силовых агрегатов

Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.

Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.

Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления.

Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат.

Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального.

При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты.

При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Самозапуск иногда становится причиной ложного срабатывания АВ.

Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться.

Обратите внимание

В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Заключение

В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены.

Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.

Источник: https://YaElectrik.ru/jelektroshhitok/avtomat-zashhity-elektrodvigatelya

Ссылка на основную публикацию
Adblock
detector