Как проверить асинхронный двигатель на межвитковое замыкание – советы электрика

Как проверить асинхронный двигатель на межвитковое замыкание

Починить или проверить своими руками асинхронный электродвигатель будет не тяжело большинству людей. Наиболее частой поломкой у асинхронных двигателей является износ подшипников, реже обрыв или отсыревание обмоток.

Большинство неисправностей можно выявить при внешнем осмотре.

Рекомендую периодически. что бы продлить срок службы- проверять у электродвигателей: состояние подшипников, чистить его внутри от мусора и пыли, и особенно вентиляционные отверстия.

Перед подключением или если долго не использовался мотор, необходимо у него проверить сопротивление изоляции мегомметром. Или если нет знакомого электрика с мегомметром, тогда не помешает в профилактических целях его разобрать и посушить обмотки статора несколько суток.

Прежде чем приступать к ремонту электродвигателя, необходимо проверить наличие напряжения и исправность магнитных пускателей, теплового реле, кабелей подключения и конденсатора, при его наличии в схеме.

Проверка электродвигателя внешним осмотром

Полноценный осмотр можно провести только после разборки электродвигателя, но сразу не спешите разбирать.

Все работы выполняются только после отключения электропитания, проверки его отсутствия на электродвигателе и принятия мер по предотвращению его самопроизвольного или ошибочного включения. Если устройство включается в розетку, тогда просто достаточно достать вилку из нее.

Если в схеме есть конденсаторы. тогда их выводы необходимо разрядить.

Проверьте перед началом разборки:

  1. Люфт в подшипниках. Как проверить и заменить подшипники читайте в этой статье.
  2. Проверьте покрытие краски на корпусе. Выгоревшая или отлущиваяся местами краска свидетельствует о нагревании двигателя в этих местах. Особенно обратите внимание на места расположения подшипников.
  3. Проверьте лапы крепления электродвигателя и вал вместе его соединения с механизмом. Трещины или отломанные лапы необходимо приварить.

После разборки по этой инструкции необходимо проверить:

  1. Смазку в подшипниках. Или заменить их при износе.
  2. Отсутствие касаний при вращении ротора в статоре. Если есть потертости, значит изношены подшипники. Если сильно стерт ротор или есть значительные сколы (чаще всего в районе крыльчатки), его необходимо будет заменить, потому что будет нарушена балансировка вала.
  3. Осматриваем короткозамкнутый рото р на отсутствие повреждений, как правило это оплавления или почернения в местах расположения стержней, соединенных с контактными кольцами. Поврежденный ротор ремонту не подлежит и его необходимо заменить.
  4. Далее необходимо осмотреть обмотки статора электродвигателя в первую очередь на целостность, т. е. не должно быть оторванных или торчащих проводов. Затем внимательно смотрим и ищем места почернения проводов. Исправные провода темно-красного цвета. Если же выгорает электроизоляционный лак, то провода в этих местах чернеют.

Может выгореть как часть обмотки и возникнет межвитковое замыкание (на картинке слева), так и вся обмотка (на правой картинке). Несмотря на то, что в первом случае двигатель будет работать и перегреваться, все равно необходимо в любом случае перемотать заново обмотки.

Как прозвонить асинхронный электродвигатель

Если при внешнем осмотре ничего не выявлено, тогда необходимо продолжить проверку при помощи электротехнический измерений.

Как прозвонить электродвигатель мультиметром

Самым распространенным в домашнем хозяйстве электроизмерительным прибором является мультиметр. При его помощи можно прозвонить на целостность обмотки и на отсутствия пробоя на корпус.

В двигателях на 220 Вольт. Необходимо прозвонить пусковую и рабочую обмотки. При чем у пусковой сопротивление будет 1.5 раза больше, чем у рабочей. У некоторых электромоторов пусковая и рабочая обмотка будет иметь общий третий вывод. Подробнее об этом читайте здесь.

Например. у мотора от старой стиральной машины есть три вывода. Самое большое сопротивление будет между двумя точками, включающей в себя 2 обмотки, например 50 Ом. Если взять оставшейся третий конец, то это и будет общий конец. Если замерить между ним и 2 концом пусковой обмотки- получите величину около 30-35 Ом, а если между ним и 2 концом рабочей- около 15 Ом.

В двигателях на 380 Вольт, подключенных по схеме звезда или треугольник необходимо будет разобрать схему и прозвонить отдельно каждую из трех обмоток. У них сопротивление должно быть одинаковым от 2 до 15 Ом с отклонениями не более 5 процентов.

Обязательно необходимо прозвонить все обмотки между собой и на корпус. Если сопротивление не велико до бесконечности, значит есть пробой обмоток между собой или на корпус. Такие двигатели необходимо сдать в перемотку обмоток.

Как проверить сопротивление изоляции обмоток электродвигателя

К сожалению, мультиметром не проверить величину сопротивления изоляции обмоток электромотора для этого необходим мегомметр на 1000 Вольт с отдельным источником питания. Прибор дорогой, но он есть у каждого электрика на работе, которому приходится подключать или ремонтировать электродвигатели.

При измерении один провод от мегомметра присоединяют к корпусу в неокрашенном месте, а второй по очереди к каждому выводу обмотки.После этого измерьте сопротивление изоляции между всеми обмотками. При величине менее 0.5 Мегома- двигатель необходимо просушить.

Будьте внимательны. во избежание поражения электрическим током не прикасайтесь к измерительным зажимам во время проведения измерений.

Все измерения проводятся только на обесточенном оборудовании и по продолжительности не менее 2-3 минут.

Как найти межвитковое замыкание

Наиболее сложным является поиск межвиткового замыкания. при котором замыкается между собой лишь часть витков одной обмотки.

Не всегда выявляется при внешнем осмотре, поэтому для этих целей применяется для двигателей на 380 Вольт- измеритель индуктивности. У всех трех обмоток должно быть одинаковое значение.

При межвитковом замыкании у поврежденной обмотки индуктивность будет минимальной.

Когда Я был на практике 16 лет назад на заводе, электрики для поиска межвитковых замыканий у асинхронного мотора мощностью 10 Киловатт использовали шарик из подшипника диаметром около 10 миллиметров.

Они вынимали ротор и подключали 3 фазы через 3 понижающих трансформатора на обмотки статора. Если все в порядке шарик движется по кругу статора, а при наличии межвиткового замыкания он примагничивается к месту его возникновения.

Проверка должна быть кратковременной и будьте аккуратны шарик может вылететь!

Я уже давно работаю электриком и проверяю на межвитковое замыкание, если только двигатель на 380 В начинает сильно греться после 15-30 минут работы. Но перед разборкой, на включенном моторе проверяю величину потребляемого им тока на всех трех фазах. Она должна быть одинаковой с небольшой поправкой на погрешности измерений.

Related Posts

  • Как проверить и сделать коллекторный электродвигатель
  • Как сделать ремонт светодиодных ламп, светильников или люстр
  • Закон ома для замкнутой цепи
  • Перемычки для оконных и дверных проемов: виды, размеры, особенности монтажа
  • Чудо-прибор для экономии воды – насадка на кран
  • Нормы расхода электроэнергии — что это такое?

Межвитковое замыкание электродвигателя

Причины межвиткового замыкания

Если вы читали предыдущие статьи, то знаете что межвитковое замыкание электродвигателя составляет 40% неисправностей электродвигателей. Причин для межвиткового замыкания может быть несколько.

Перегруз электродвигателя — нагрузка на электроустановку превышает норму вследствие чего обмотки статора нагреваются и изоляция обмоток разрушается что приводит к межвитковому замыканию. Нагрузка может возникнуть из за неправильной эксплуатации оборудования.

Номинальную нагрузку можно определить по паспорту электроустановки или прочитать на табличке электродвигателя. Также перегруз может возникнуть из за механических повреждений самого электродвигателя.

Обратите внимание

Заклинившие или сухие подшипники тоже могут стать причиной межвиткового «коротыша».

Не исключена возможность заводского брака обмоток, и если электродвигатель перематывался в кустарной мастерской, то большая вероятность что «межвитняк» уже стучится в ваши двери.

Также неправильная эксплуатация и хранение электродвигателя может стать причиной попадания влаги внутрь двигателя отсыревшие обмотки тоже весьма распространенная причина межвиткового замыкания.

Как правило с таким замыканием электродвигатель уже не жилец, и работать будет весьма непродолжительное время. Я думаю хватит разбирать причины давайте перейдем к вопросу « как определить межвитковое замыкание».

Поиск межвиткового замыкания.

Важно

Определить межвитковое замыкание не слишком сложно, и для это есть несколько подручных способов.

Если при работе электромотора какая то часть статора нагрелась больше чем весь двигатель, то вам стоит подумать об остановке и точной диагностике.

Также помогут определить замыкание обыкновенные токовые клещи, меряем по очереди нагрузку на каждую фазу и если на одной из них она больше чем на других то это признак того что возможно есть межвитняк обмотки. Но следует учитывать что может быть перекос фаз на подстанции для того что бы убедится мереям вольтметром приходящие напряжение.

Можно прозвонить обмотки тестером. Для этого прозваниваем каждую обмотку в отдельности и сверяем полученные результаты сопротивления. Этот способ может и не сработать если замыкают всего пару витков, то расхождение будет минимальным.

Важно

Не будет лишним брякнуть электродвигатель мегомметром в поиске замыкания на корпус, один щуп прикладываем к корпусу электродвигателя, а второй к по очереди к выходу обмоток в борно.

Если у вас остались еще сомнения, то вам придется разобрать электромотор. Сняв крышки и ротор, визуально рассматриваем обмотки. Вполне вероятно, что вы увидите сгоревшую часть.

Ну и самый точный способ проверки межвиткового замыкания это проверка при помощи трехфазного понижающего трансформатора (36-42 вольта) и шарика от подшипника.

На стартер разобранного электродвигателя подаем три фазы с понижающего трансформатора. С маленьким разгоном кидаем туда шарик, если шарик начинает бегать по кругу внутри статора то все в порядке. Если он, сделав пару оборотов прилип к одному месту, то значит там межвитковое замыкание.

Вместо шарика можно использовать пластинку от трансформаторного железа, прикладываем внутри статора к железу и в том месте где межвитковое она начнет дребезжать, а там где все в порядке пластина будет примагничиваться.

Обязательно используйте все выше перечисленные способы с заземленным электродвигателем и строго при помощи понижающего трансформатора.

Проверка шариком и пластинкой при напряжении в 380 вольт запрещена и очень опасна для вашей жизни.

Как прозвонить электродвигатель мультиметром

Типы электродвигателей

Наиболее распространённые электродвигатели это;

Асинхронный трехфазный двигатель с короткозамкнутым ротором

— асинхронный трехфазный двигатель с короткозамкнутым ротором. Три обмотки двигателя уложены в пазы статора; — асинхронный однофазный двигатель с короткозамкнутым ротором.

В основном его применение находит в бытовой электротехнике в пылесосах, стиральных машинах, вытяжках, вентиляторах, кондиционерах; — коллекторные двигатели постоянного тока установлены в электрооборудовании автомобиля (вентиляторы, стеклоподъемники, насосы); — коллекторный двигатель переменного тока находит применение в электрических инструментах. К таким инструментам относятся электродрели, болгарки, перфораторы, мясорубки;

— асинхронный двигатель с фазным ротором имеет довольно мощный пусковой момент. Поэтому такие двигатели устанавливаются в приводах подъемников, кранах, лифтах.

Измерение сопротивления изоляции обмоток

Для проверки двигателя на сопротивление изоляции, электрики используют мегомметр с испытательным напряжением 500 В или 1000 В. Этим прибором измеряют сопротивление изоляции обмоток двигателей рассчитанных на рабочее напряжение 220 В или 380 В.

Для электродвигателей с номинальным напряжением 12В, 24в используют тестер, так как изоляция этих обмоток не рассчитана на испытание под высоким напряжением 500 В мегомметра. Обычно в паспорте на электродвигатель указывается испытательное напряжение при измерении сопротивлений изоляции катушек.

Сопротивление изоляции обычно проверяется мегомметром

Перед измерением сопротивления изоляции нужно ознакомиться со схемой подключения электродвигателя, так как некоторые соединения звездой обмоток бывают подключены средней точкой к корпусу двигателя.

Если обмотки имеет одну или несколько точек соединений, “треугольник”, “звезда”, однофазный двигатель с пусковой и рабочей обмоткой, тогда изоляция проверяется между любой точкой соединения обмоток и корпусом.

Совет

Если сопротивление изоляции значительно меньше 20 Мом, обмотки разъединяют и проверяют каждую отдельно. Для целого двигателя сопротивление изоляции между катушками и металлическим корпусом должно быть не ниже 20 Мом. Если электродвигатель работал или хранился в сырых условиях, тогда сопротивление изоляции может быть ниже 20 Мом.

Тогда электродвигатель разбирают и просушивают несколько часов накальной лампой 60 Вт, помещенной в корпус статора. При измерении сопротивления изоляции мультиметром, выставляют предел измерений на максимальное сопротивление, на мегомы.

Как прозвонить электродвигатель на обрыв обмоток и межвитковое замыкание

Межвитковое замыкание в обмотках можно проверить мультиметром на омах. Если имеется три обмотки, тогда достаточно сравнить их сопротивление. Отличие в сопротивлении одной обмотки указывает на межвитковое замыкание. Межвитковое замыкание однофазных двигателей определить труднее, так как имеются только разные обмотки — это пусковая и рабочая обмотка, которая имеет меньшее сопротивление.

Сравнивать их нет возможности. Выявить межвитковое замыкание обмоток трехфазных и однофазных двигателей можно измерительными клещами, сравнивая токи обмоток с их паспортными данными. При межвитковом замыкании в обмотках, их номинальный ток возрастает, а величина пускового момента уменьшается, двигатель с трудом запускается или совсем не запускается, а только гудит.

Читайте также:  Схема установки узо - советы электрика

Проверка электродвигателя на обрыв и межвитковое замыкание обмоток

Измерять сопротивление обмоток мощных электродвигателей мультиметром не получится, потому что сечение проводов велико и сопротивление обмоток находится в пределах десятых долей ома. Определить разницу сопротивлений, при таких значениях мультиметром, не представляется возможным. В этом случае исправность электродвигателя лучше проверять токоизмерительными клещами.

Если нет возможности подключить электродвигатель к сети, сопротивление обмоток можно найти косвенным методом. Собирают последовательную цепь из аккумулятора на напряжение 12В с реостатом на 20 ом. С помощью мультиметра (амперметра) выставляют реостатом ток 0,5 — 1 А. Собранное приспособление подключают к проверяемой обмотке и замеряют падение напряжения.

Прозвонка электродвигателя на обрыв и сопротивление изоляции

Меньшее падение напряжения на катушке укажет на межвитковое замыкание. Если требуется знать сопротивление обмотки, его рассчитывают по формуле R = U/I. Неисправность электродвигателя можно также определить визуально, на разобранном статоре или по запаху горелой изоляции. Если визуально обнаружено место обрыва, его можно устранить, припаять перемычку, хорошо изолировать и уложить.

Замер сопротивлений обмоток трехфазных двигателей проводят без снятия перемычек на схемах соединений обмоток “звезда” и “треугольник”. Сопротивление катушек коллекторных электродвигаталей постоянного и переменного напряжения также проверяют мультиметром. А при большой их мощности проверка ведется с помощью приспособления аккумулятор — реостат, как указано выше.

Обратите внимание

Сопротивление обмоток этих двигателей проверяют отдельно на статоре и роторе. На роторе лучше проверять сопротивление непосредственно на щетках, прокручивая ротор. В этом случае можно определить неплотное прилегание щеток к ламелям ротора. Устраняют нагар и неровности на ламелях коллектора, их шлифовкой на токарном станке.

Вручную эту операцию сделать трудно, можно не устранить эту неисправность, а искрение щеток только увеличится. Пазы между ламелями также прочищают. В обмотках электродвигателей может быть установлен плавкий предохранитель, тепловое реле. При наличии теплового реле проверяют его контакты и при необходимости чистят их.

Тоже интересные статьи

Подключение трехфазного двигателя к однофазной сети

Ремонт импульсных блоков питания своими руками

Прибор для экономии электроэнергии

Источники: http://olimp23.com/poleznye-sovety/kak-proverit-i-sdelat-asinxronnyj-elektrodvigatel, http://elektro-blog.ru/dvigateli/42-elektrodvig/98-megvitkovoe-zamikanie-elektrodvigatelia, http://electricavdome.ru/kak-prozvonit-elektrodvigatel-multimetrom.html

Источник: http://electricremont.ru/kak-proverit-asinhronnyj-dvigatel-na-mezhvitkovoe-zamykanie.html

Межвитковое замыкание электродвигателя

Межвитковое замыкание электродвигателя

Причины  межвиткового замыкания

Если вы читали предыдущие статьи,  то знаете что межвитковое замыкание электродвигателя составляет 40%  неисправностей электродвигателей.  Причин для межвиткового замыкания может быть несколько.

 Перегруз электродвигателя –  нагрузка на электроустановку превышает норму  вследствие чего обмотки статора нагреваются и изоляция обмоток разрушается что приводит к межвитковому замыканию.  Нагрузка может возникнуть из за неправильной эксплуатации оборудования.

Номинальную нагрузку можно определить по паспорту электроустановки или прочитать на табличке электродвигателя.  Также перегруз может возникнуть из за механических повреждений самого электродвигателя.

  Заклинившие или сухие подшипники тоже могут стать причиной межвиткового «коротыша».

Не исключена возможность  заводского брака обмоток, и если электродвигатель перематывался в кустарной мастерской, то большая вероятность что «межвитняк» уже стучится в ваши двери.

Также неправильная эксплуатация  и хранение электродвигателя может стать причиной попадания влаги внутрь двигателя  отсыревшие обмотки тоже весьма распространенная  причина межвиткового замыкания.

Как правило с таким замыканием электродвигатель уже не жилец, и работать будет весьма непродолжительное время.   Я думаю хватит разбирать причины давайте перейдем к вопросу « как определить межвитковое  замыкание».

Поиск межвиткового замыкания.

Важно

Определить межвитковое замыкание не слишком сложно, и для это есть несколько подручных способов.

Если при работе  электромотора  какая то  часть статора нагрелась больше чем весь двигатель, то вам стоит подумать  об остановке и точной диагностике.

Также помогут определить замыкание обыкновенные токовые клещи, меряем по очереди нагрузку на каждую фазу и если на одной из них она больше чем на других то это признак того что возможно есть межвитняк обмотки.  Но следует учитывать что может быть перекос фаз на подстанции для того что бы убедится мереям вольтметром приходящие напряжение.

Можно прозвонить обмотки тестером.  Для этого  прозваниваем каждую обмотку в отдельности и сверяем полученные результаты сопротивления. Этот способ может и не сработать если замыкают всего пару витков, то расхождение будет минимальным.

Не будет лишним брякнуть электродвигатель мегомметром  в поиске замыкания на корпус, один щуп прикладываем к корпусу электродвигателя,  а второй к  по очереди к выходу обмоток в борно.

Если у вас остались еще сомнения, то вам придется разобрать электромотор.  Сняв крышки и ротор,  визуально рассматриваем обмотки. Вполне вероятно, что вы увидите сгоревшую часть. 

Ну и самый точный способ  проверки межвиткового замыкания это проверка при помощи трехфазного понижающего трансформатора (36-42 вольта) и шарика от подшипника.

На стартер разобранного электродвигателя подаем  три фазы с понижающего трансформатора.  С маленьким разгоном кидаем  туда шарик, если шарик начинает бегать по кругу внутри статора то все в порядке. Если он, сделав пару оборотов  прилип к одному месту, то значит там межвитковое замыкание.

Совет

Вместо шарика можно использовать пластинку от трансформаторного железа, прикладываем  внутри статора к железу и в том месте где межвитковое она начнет дребезжать, а там где все в порядке пластина будет примагничиваться.

Обязательно используйте все выше перечисленные способы с заземленным  электродвигателем и строго при помощи понижающего трансформатора.

Проверка  шариком и пластинкой  при напряжении в 380 вольт  запрещена и очень опасна для  вашей жизни.

Источник: http://elektro-blog.ru/dvigateli/42-elektrodvig/98-megvitkovoe-zamikanie-elektrodvigatelia

Как определить межвитковое замыкание электродвигателя

До 40 процентов случаев проблем с электродвигателем связано с межвитковым замыканием. Как правило, оно возникает в катушке обмотки возбуждения. Основные причины:

  • Перегрузка двигателя из-за неправильной его эксплуатации либо механических повреждений. Вследствие этого происходит перегрев обмоток статора и повреждение или разрушение их изоляционного слоя. В результате уменьшается сопротивление цепи, и контакт витков катушки ведет к замыканию и выходу двигателя из строя.
  • «Сухие» или заклинившие подшипники.
  • Заводской брак обмоток (либо их неудачная перемотка).
  • Попадание влаги внутрь агрегата из-за несоблюдения условий его хранения (например, во влажном месте).

Итак, причины более или менее понятны, теперь мы попытаемся разобраться: как определить межвитковое замыкание электродвигателя?

Способы определения межвиткового замыкания двигателя

Если какая-либо часть статора сильно нагревается, стоит прекратить работу и провести диагностику агрегата. Мы предлагаем следующие варианты:

  • Токовые клещи. Измеряется нагрузка на каждую фазу, и, если на какой-либо из них она значительно увеличена, то это признак межвиткового замыкания. Однако чтобы избежать ошибки из-за, например, перекоса фаз на подстанции, стоит также измерить приходящее напряжение вольтметром.
  • Прозвон обмоток тестером. Прозванивается каждая обмотка в отдельности, затем полученные результаты сопротивления сверяются. Но следует учесть, что этот способ может оказаться неэффективным при замыкании 2-3 витков, т.к. в этом случае расхождение будет небольшим.
  • Измерения мегомметром. Чтобы обнаружить замыкание на корпус, один щуп прикладывается к корпусу двигателя, второй – к выходу обмоток в борно.
  • Проверить межвитковое замыкание электродвигателя также можно визуально. Агрегат разбирается и тщательно осматривается на предмет наличия сгоревшей части обмотки.
  • Проверка с помощью понижающего трехфазного трансформатора и шарика от подшипника или пластинки от трансформаторного железа. Этот способ считается самым надежным. Предупреждение: ни в коем случае не используйте данный алгоритм при напряжении в 380 вольт, это опасно для жизни! Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание. Пластинка прикладывается к железу внутри статора. Если она «примагничивается», причин для беспокойства нет, а ее дребезжание указывает на межвитковое замыкание.

Следует также отметить, что все перечисленные выше способы проверки производятся исключительно с заземленным двигателем.

Таким образом, зная, как проверить обмотку электродвигателя на межвитковое замыкание, вы сможете самостоятельно выявить причину неисправности и принять решение о ее своевременном устранении.

Источник: https://www.szemo.ru/press-tsentr/article/kak-opredelit-mezhvitkovoe-zamykanie-elektrodvigatelya/

Как определить межвитковое замыкание

При эксплуатации любого оборудования, рано или поздно возникают различные неисправности, требующие ремонта. Не являются исключением и электрические двигатели.

Причин этому большое количество и одной из них является межвитковое замыкание. В этом случае, сгорает казалось бы совершенно исправный двигатель. Или он просто перестает работать.

Поэтому, очень часто возникает проблема, как определить межвитковое замыкание, чтобы устранить причину неисправности.

Причины межвиткового замыкания

Как правило, все короткие замыкания возникают из-за нарушения изоляции каких-либо элементов в электротехнических устройствах и их соприкосновении между собой. В электрических двигателях, кроме замыкания на корпус, нередко присутствуют проявления межвиткового замыкания. Такое случается, когда между собой замыкаются обмотки статора или ротора.

Основной причиной межвиткового замыкания считается перегрев двигателя. При повышенной температуре происходит разрушение лака, покрывающего обмотки. В результате, обмоточные витки оголяются и начинают взаимодействовать друг с другом, вызывая замыкание. Даже при наличии одной такой точки, двигатель перестает работать. Устранение такой неисправности производится только с помощью перемотки.

Определение межвиткового замыкания

Прежде всего, необходимо точно установить отсутствие дополнительной нагрузки на двигатель. Обычно, это случается при засорении воздушной системы или заедании механической части.

Что бы определить межвитковое замыкание, нужно понаблюдать за работающим двигателем. Как правило, происходит интенсивное круговое искрение. Кроме того, ощущается неприятный запах горелой изоляции. После установления причины, нужно определить точное место неисправности.

При визуальном осмотре, обмотки якоря не должны быть вспученными и почерневшими. Запах горелого также должен отсутствовать. Также осматривается и коллектор на наличие замыканий между его пластинами.

Замыкание обмотки статора определяется путем измерения сопротивления между корпусом и обмоткой, а также сопротивления самой обмотки. В нормальном состоянии, разница сопротивлений крайне незначительная. Если же этот показатель превышает 10%, то необходима замена обмотки, имеющая меньшее сопротивление.

Основным ремонтом в данной ситуации служит перематывание неисправных обмоток. Это возможно только в специальных условиях при участии квалифицированных специалистов.

Как выглядит межвитковое замыкание

Источник: https://electric-220.ru/news/kak_opredelit_mezhvitkovoe_zamykanie/2014-06-18-637

Как проверить обмотку электродвигателя

Вам понадобится

  • – отвертка;
  • – гаечные ключи;
  • – тестер;
  • – контрольная лампа;
  • – вольтметр;
  • – изоляционная лента.

Инструкция

Осмотрите концы обмоток, отходящие от двигателя; у некоторых моделей они выведены на специальную доску зажимов.

В соответствии со стандартами статорные обмотки асинхронного электрического двигателя имеют шесть выводов, снабженных соответствующей заводской маркировкой: первая фаза – C1 и C4; вторая фаза – C2 и C5; третья – C3 и C6. Первое обозначение в каждой паре соответствует началу обмотки, второе – ее концу.

При отсутствии доски зажимов ищите стандартные обозначения согласованных выводов фаз обмотки на металлических обжимающих кольцах.

Обратите внимание

Если обжимающие кольца по каким-то причинам утрачены, выявите начало обмоток самостоятельно. Для этого вначале определите пары выводов, принадлежащих отдельным фазным обмоткам, используя контрольную лампу.

К первому зажиму сети подсоедините один из шести выводов обмотки статора, а ко второму – конец контрольной лампы. Другой конец лампы поочередно поднесите к оставшимся пяти выводам, пока лампа не загорится. Это свидетельствует, что найденные два вывода принадлежат одной фазе обмотки. Пометьте выводы, привязав к ним цветную нить или обмотав кусочками изоляционной ленты.

После определения фаз обмотки найдите их начала и концы, используя способ трансформации или способ подбора фаз.

При первом способе к одной из фаз подключите контрольную лампу, а две оставшиеся фазы включите в сеть. Лампа укажет на наличие электродвижущей силы (ЭДС) слабым накалом. Накал не всегда может быть заметен, поэтому в качестве контрольного прибора можно дополнительно использовать вольтметр, определяя наличие ЭДС по отклонению стрелки.

Обнаружив накал лампы или напряжение на вольтметре, пометьте соответствующие концы обмоток бирками с пометками Н (начало фазы) и К (конец фазы).

Второй способ определения начала и конца обмотки используйте для двигателей мощностью 3-5 кВт. После нахождения выводов отдельных фаз соедините их наугад по типу «звезда». Для этого по одному выводу от каждой фазы подключите к сети, а оставшиеся соедините в общую точку.

Включите двигатель в сеть. Если общая точка содержит все условные начала обмоток, двигатель сразу начнет работать в нормальном режиме.

Если же включенный двигатель начинает сильно гудеть, поменяйте местами выводы одной из обмоток. При наличии шумов переходите к замене выводов следующей обмотки, добившись правильной работы двигателя.

Как только электромотор стал работать нормально, пометьте все выводы, объединенные в общую точку, как «концы», а противоположные им – как «начала» обмоток.

Читайте также:  Как подключить асинхронный двигатель 380 на 220 - советы электрика

Источник: https://www.kakprosto.ru/kak-87004-kak-proverit-obmotku-elektrodvigatelya

Характерные неисправности электродвигателей и способы их устранения

Наиболее распространенные неисправности электрической части — короткие замыкания внутри обмоток электродвигателя и между ними, замыкания обмоток на корпус, а также обрывы в обмотках или во внешней цепи (питающие провода и пусковая аппаратура).

В результате указанных неисправностей электродвгателей могут иметь место: отсутствие возможности пуска электродвигателя; опасный нагрев его обмоток; ненормальная частота вращения электродвигателя; ненормальный шум (гудение и стук); неравенство токов в отдельных фазах.

Причины механического характера, вызывающие нарушение нормальной работы электродвигателей, чаще всего наблюдаются в неправильной работе подшипников: перегрев подшипников, вытекание из них масла, появление ненормального шума.

Основные виды неисправностей в электродвигателях и причины их возникновения.

Асинхронный электродвигатель не включается (перегорают предохранители или срабатывает защита). Причиной этого в электродвигателях с контактными кольцами могут быть закороченные положения пускового реостата или контактных колец. В первом случае необходимо пусковой реостат привести в нормальное (пусковое) положение, во втором — поднять приспособление, закорачивающее контактные кольца.

Включить электродвигатель не удается также из-за короткого замыкания в цепи статора. Обнаружить короткозамкнутую фазу можно на ощупь по повышенному нагреву обмотки (ощупывание следует производить, отключив предварительно электродвигатель от сети); по внешнему виду обуглившейся изоляции, а также измерением.

Важно

Если фазы статора соединены в звезду, то измеряют величины токов, потребляемых из сети отдельными фазами. Фаза, имеющая короткозамкнутые витки, будет потреблять ток больший, чем неповрежденные фазы.

При соединении отдельных фаз в треугольник токи в двух проводах, подключенных к дефектной фазе, будут иметь большие значения, чем в третьем, который соединяется только с неповрежденными фазами. При измерениях пользуются пониженным напряжением. При включении асинхронный электродвигатель не трогается с места. Причиной этого может быть обрыв одной или двух фаз цепи питания.

Для определения места обрыва сначала осматривают iiсе элементы цепи, питающей электродвигатель (проверяют целость предохранителей). Если при внешнем осмотре обнаружить обрыв фазы не удается, то мегомметром выполняют необходимые измерения. Для чего статор предварительно отключают от питающей сети.

Если обмотки статора соединены в звезду, то один конец мегомметра соединяют с нулевой точкой звезды, после чего вторым концом мегомметра касаются поочередно других концов обмотки. Присоединение мегомметра к концу исправной фазы даст нулевое показание, присоединение к фазе, имеющей обрыв, покажет большое сопротивление цепи, т. е. наличие в ней обрыва.

Если нулевая точка звезды недоступна, то двумя концами мегомметра касаются попарно всех выводов статора. Прикосновение мегомметра к концам исправных фаз покажет нулевое значение, прикосновение к концам двух фаз, одна из которых — дефектная, покажет большое сопротивление, т. е. обрыв в одной из этих фаз.

В случае соединения обмоток статора в треугольник необходимо обмотку разъединить в одной точке, после чего проверить целость каждой фазы в отдельности. Фазу, имеющую обрыв, иногда обнаруживают на ощупь (остается холодной). Если обрыв произойдет в одной из фаз статора по время работы электродвигателя, он будет продолжать работать, но начнет гудеть сильнее, чем в обычных условиях.

Отыскивать поврежденную фазу так, как это указано выше. При работе асинхронного двигателя происходит сильный нагрев обмоток статора. Такое явление, сопровождаемое сильным гудением электродвигателя, наблюдается при коротком замыкании в какой-либо обмотке статора, а также при двойном замыкании обмотки статора на корпус.

Работающий асинхронный электродвигатель начал гудеть. При этом его скорость и мощность снижаются. Причиной нарушения режима работы электродвигателя является обрыв одной фазы.

При включении двигателя постоянного тока он не трогается с места. Причиной этого могут служить перегорание предохранителей, обрыв в цепях питания, обрыв сопротивлений в пусковом реостате.

Сначала внимательно осматривают, затем проверяют с помощью мегомметра или контрольной лампы напряжением не выше 36 В целость указанных элементов. Если указанным путем не удается определить место обрыва, переходят к проверке целости обмотки якоря.

Обрыв в обмотке якоря чаще всего наблюдается в местах соединений коллектора с секциями обмотки. Измеряя падения напряжения между коллекторными пластинами, находят место повреждения. Другой причиной указанного явления может быть перегрузка электродвигателя.

Совет

Проверить это можно с помощью пуска электродвигателя вхолостую, предварительно разобщив его с приводным механизмом.

При включении электродвигателя постоянного тока перегорают предохранители или срабатывает максимальная защита.

Закороченное положение пускового реостата может быть одной из причин указанного явления. В этом случае реостат переводят в нормальное пусковое положение. Это явление может наблюдаться также при слишком быстром выводе рукоятки реостата, поэтому при повторном включении электродвигателя реостат выводят более медленно.

При работе электродвигателя наблюдается повышенный нагрев подшипника. Причиной повышенного нагрева подшипника может быть недостаточная величина зазора между шейкой вала и вкладышем подшипника, недостаточное или лишнее количество масла в подшипнике (проверяют уровень масла), загрязнение масла или применение масла несоответствующих марок.

В последних случаях масло заменяют, промыв предварительно подшипник бензином. При пуске или во время работы электродвигателя из зазора между ротором и статором появляются искры и дым. Возможной причиной этого явления может быть задевание ротора за статор. Это происходит при значительном срабатывании подшипников.

При работе электродвигателя постоянного тока наблюдается искрение под щетками. Причинами такого явления могут служить неправильный подбор щеток, слабое нажатие их на коллектор, недостаточно гладкая поверхность коллектора и неправильное расположение щеток. В последнем случае необходимо передвинуть щетки, расположив их на нейтральной линии.

При работе электродвигателя наблюдается усиленная вибрация, которая может появляться, например, из-за недостаточной прочности закрепления электродвигателя на фундаментной плите. Если вибрация сопровождается перегревом подшипника, это указывает на наличие осевого давления на подшипник.

Таблица 1.

Неисправности асинхронных электродвигателей и способы их устранения

Неисправность Возможная причина Способ устранения
Щетки искрят, некоторые щетки и их арматура сильно нагреваются и обгорают Щетки плохо пришлифованы Пришлифовать щетки
Щетки не могут свободно двигаться в обойме щеткодержателя — мал зазор Установить нормальный зазор между щеткой и обоймой О,2—О,3 мм
Загрязнены или замаслены контактные кольца и щетки Очистить бензином кольца и щетки и устранить причины загрязнения
Контактные кольца имеют неровную поверхность Обточить или отшлифовать контактные кольца
Слабо прижаты щетки к контактным кольцам Отрегулировать нажатие щеток
Неравномерное распределение тока между щетками Отрегулировать нажатие щеток, проверить исправность контактов Траверс, токопроводов, щеткодержателей
Равномерный перегрев активной стали статора Напряжение сети выше номинального Снизить напряжение до номинального; усилить вентиляцию
Повышенный местный нагрев активной стали при холстом ходе и номинальном напряжении Между отдельными листами активной стали имеются местные замыкания Удалить заусеницы, устранить замыкание и обработать листы изоляционным лаком
Нарушено соединение между стяжными болтами и активной сталью Восстановить изоляцию стяжных болтов
Двигатель с фазным ротором не развивает номинальной частоты вращения с загрузкой Плохой контакт в пайках ротора Проверить все пайки ротора. В случае отсутствия неисправностей при наружном осмотре проверку паек проводят методом падения напряжения
Обмотка ротора имеет плохой контакт с контактными кольцами Проверить контакты токопроводов в местах соединения их с обмоткой и контактными кольцами
Плохой контакт в щеточном аппарате. Ослабли контакты механизма для короткого замыкания ротора Прошлифовать и отрегулировать нажатие щеток
Плохой контакт в соединениях между пусковым реостатом и контактными кольцами Проверить исправность контактов в местах присоединения соединительных проводов к выводам ротора и пускового реостата
Двигатель с фазным ротором идет в ход без нагрузки — при разомкнутой цепи ротора, а при пуске в ход с нагрузкой не развивает оборотов Короткое замыкание между соседними хомутиками лобовых соединений или в обмотке ротора Устранить касание соседних хомутиков
Обмотка ротора в двух местах заземлена После определения короткозамкнутой части обмотка поврежденные катушки заменить новыми
Двигатель с короткозамкнутым ротором не идет в ход Перегорели предохранители, неисправен автоматический выключатель, сработало тепловое реле Устранить неисправности
При пуске двигателя происходит перекрытие контактных колец электрической дугой Контактные кольца и щеточный аппарат загрязнены Провести очистку
Повышенная влажность воздуха Провести дополнительную изоляцию или заменить двигатель другим, соответствующим условиям окружающей среды
Обрыв в соединениях ротора и в самом реостате Проверить исправность соединения

Источник: http://www.eti.su/articles/elektricheskie-mashini/elektricheskie-mashini_462.html

Проверка межвиткового КЗ

    Людям, которые часто имеют дело с двигателями,  этот прибор очень пригодится.  По своей конструкции и в применении он очень прост.

С помощью этого прибора можно проверять обмотки трансформаторов, дросселей, электродвигателей, реле, маг­нитных пускателей, контакто­ров и других катушек индук­тивностью от 200 мкГн до 2 Гн.

Можно оп­ределить не только целостность обмотки, но и наличие в ней межвиткового КЗ. На рисунку, продемонстрирована схема прибора:

(для увеличения кликните по изображению)

Обратите внимание

   Основа прибора — измерительный генератор на транзисторах VT1, VT2. Его рабочая частота определяется параметрами колебательного контура, образованного кон­денсатором С1 и проверяемой катушкой индуктивности, к выводам которой подключают щупы ХР1 и ХР2. Переменным резистором R1 устанавливают необходимую глубину положительной обрат­ной связи, обеспечивающей надежную работу генератора.

   Транзистор VT3, работаю­щий в диодном режиме, создает необходимый сдвиг уров­ня напряжения между эмит­тером транзистора VT2 и ба­зой VT4.

   На транзисторах VT4, VT5 собран генератор импульсов, который совместно с усили­телем мощности на транзисто­ре VT6 обеспечивает работу светодиода HL1 в одном из трех режимов: от­сутствие свечения, мигания и непрерывного горения. Режим работы генератора импульсов определяется напряжением смещения на базе транзистора VT4.

   Работает прибор следующим образом. При замкнутых щупах ХР1 и ХР2 измерительный генератор не возбуждается, транзистор VT2 открыт. Постоянного напря­жения на его эмиттере, а зна­чит, на базе транзистора VT4 недостаточно для запуска ге­нератора импульсов. Транзи­сторы VT5, VT6 при этом открыты, и диод горит непре­рывно, сигнализируя о целост­ности проверяемой цепи.

   При подключении к щупам прибора исправной катушки индуктивности,   скажем,   обмотки двигателя и уста­новке движка переменного ре­зистора R1 в определенное по­ложение, измерительный гене­ратор возбуждается. Напря­жение на эмиттере транзисто­ра VT2 увеличивается, что приводит к увеличению напря­жения смещения на базе тран­зистора VT4 и запуску гене­ратора импульсов. Диод на­чинает мигать.

Если в проверяемой обмот­ке есть короткозамкнутые вит­ки, измерительный генератор не возбуждается и пробник работает, как при замкнутых щупах (диод просто светится).

   При разомкнутых щупах или обрыве цепи проверяемой катушки транзистор VT2 за­крыт. Напряжение на его эмиттере, а значит, и на базе транзистора VT4 резко возра­стает. Этот транзистор откры­вается до насыщения, и ко­лебания генератора импульсов срываются. Транзисторы VT5, VT6 закрываются, диод HL1 не светится.

   Кроме указанных на схеме, транзисторы VT1— VT3 мо­гут быть КТ315Г, КТ358В, КТ312В. Транзисторы КТ361Б можно заменить на любые, из серий КТ502, КТ361.

Важно

Тран­зистор VT6 целесообразно ис­пользовать серий КТ315, КТ503 с любым буквенным ин­дексом.

По­стоянные резисторы — МЛТ-0,125; конденсатор С1 — КМ; С2 и СЗ — К50-6; светодиод АЛ310А, АЛ 307А, АЛ307Б, нужно последовательно включить в схему резистор сопротивлением 68 Ом.; источник питания — 3В (обычные батарейки или крона).

   Может случиться, что в крайнем правом положении движка резистора и при разом­кнутых щупах пробника диод будет светиться. Тогда при­дется подобрать резистор R3 (увеличить его сопротивле­ние), чтобы диод погас.

   При проверке катушек ма­лой индуктивности острота «настройки» переменного ре­зистора может оказаться чрез­мерной.

Выйти из положения нетрудно включением после­довательно с резистором R1 еще одного переменного ре­зистора с малым сопротивле­нием, либо использованием вместо переменного резистора магазина сопротивлений или набора резисторов, подклю­чаемых малогабаритным мно­гопозиционным переключате­лем (грубо, плавно). Информация взята из журнала “Радио” №7 за 1990 год.

А вот так я его сделал:

Кого заинтересует, пишите, есть печатка в формате Sprint-Layout

На видео я продемонстрировал его в работе, заведомо взял нерабочий двигатель.

Источник: http://e-scope.com.ua/article-7/prove

Как проверить межвитковое замыкание

Люди, разбирающиеся в технике, не понаслышке знают о таком понятии, как межвитковое замыкание. Для проверки понадобится специальный прибор, который достаточно прост в применении.

Чтобы быстро приобрести устройство для определения дефектов, можно перейти на сайт эгир.рф/pribor/indikator-defektov-idvi-03.html. Прибор отличается качественностью и приемлемой стоимостью.

Читайте также:  Схемные обозначения в электротехнике - советы электрика

Основные причины

Межвитковое замыкание может произойти по нескольким основным причинам:

  • нарушения в изоляции приборов;
  • соприкосновение элементов;
  • проблемы в статоре или роторе.

Когда происходит перегрев в области двигателя, в большинстве случаев возникает межвитковое замыкание. В этом процессе разрушается лак, который покрывает обмотку. В результате такого перегревания, происходит контакт витков. Этот процесс и провоцирует замыкание, после которого двигатель может и вовсе выйти из строя.

Даже при появлении одной такой точки, система теряет функциональные возможности. Поэтому необходимо как можно быстрее выявить дефект с помощью специальных приборов.

Как определить замыкание

Перед тем, как приступать к устранению дефекта, необходимо выявить и исключить нагрузку на двигатель. Такие процессы наблюдаются при засорении системы или же при возникновении проблем в механической зоне. Чтобы определить замыкание, нужно внимательно присмотреться к работе двигателя. В таком случае происходит искрение, при чем оно отличается высокой интенсивностью.

Еще одним характерным признаком, по которому можно выявить проблему, является наличие неприятного запаха горелого. Межвитковое замыкание может наблюдаться в катушках, и иногда даже опытному мастеру тяжело определить подобный дефект. Основной причиной этой проблемы является повреждение области обмотки, что провоцирует усиление силы тока.

Температура доходит до максимального уровня, что приводит к межвитковому замыканию. Во избежание дальнейшей проблемы, дефект нужно выявить как можно раньше.

Для определения замыкания необходимо подготовить несколько инструментов, после чего выполнить такие действия:

  • используйте измерительный прибор (амперметр) для снятия показаний;
  • произведите устранение неисправности;
  • измерьте силу тока (для выявления дефектов в катушке).

Для измерения показателей и обнаружения проблем в обмотках, необходимо использовать дефектоскоп. Это портативное устройство, которое позволяет за короткий период определить дефект.

Как определить межвитковое замыкание смотрим в видео:

Источник: http://euroelectrica.ru/kak-proverit-mezhvitkovoe-zamyikanie/

Неисправности асинхронного электродвигателя

При эксплуатацииэлектродвигателей в них по разным причинам возникают неисправности, которые могут привести к перерывам в работе станков и других производственных механизмов. Для того чтобы такие перерывы возможно меньше сказывались на выполнении предприятием производственных планов, необходимо уметь быстро найти причину неисправности и устранить ее.

Необходимость в быстрейшем устранении повреждений обусловливается также и тем, что работа электродвигателя, имеющего небольшое повреждение, может привести к развитию повреждения и необходимости более сложного ремонта.

Чтобы определить объем ремонта асинхронного электродвигателя, необходимо выявить характер его неисправностей. Неисправности асинхронного двигателя разделяют на внешние и внутренние.

К внешним неисправностям относятся:

  • обрыв одного или нескольких проводов, соединяющих асинхронный двигатель с сетью, или неправильное соединение;
  • перегорание плавкой вставки предохранителя;
  • неисправности аппаратуры пуска или управления, пониженное или повышенное напряжение питающей сети;
  • перегрузка асинхронного двигателя;
  • плохая вентиляция.

Внутренние неисправности асинхронного двигателя могут быть механическими и электрическими.

Механические повреждения:

  • нарушение работы подшипников;
  • деформация или поломка вала ротора (якоря);
  • разбалтывание пальцев щеткодержателей;
  • образование глубоких выработок («дорожек») на поверхности коллектора и контактных колец;
  • ослабление крепления полюсов или сердечника статора к станине; обрыв или сползание проволочных бандажей роторов (якорей);
  • трещины и подшипниковых щитах или в станине и др.

Электрические повреждения:

  • межвитковые замыкания;
  • обрывы в обмотках;
  • пробой изоляции на корпус;
  • старение изоляции;
  • распайка соединений обмотки с коллектором;
  • неправильная полярность полюсов;
  • неправильные соединения в катушках и др.

Наиболее распространенные неисправности асинхронных электродвигателей:

  1. Перегрузка или перегрев статора электродвигателя – 31%.
  2. Межвитковое замыкание – 15%.
  3. Повреждения подшипников – 12%.
  4. Повреждение обмоток статора или изоляции – 11%.
  5. Неравномерный воздушный зазор между статором и ротором – 9%.
  6. Работа электродвигателя на двух фазах – 8%.
  7. Обрыв или ослабление крепления стержней в беличьей клетке – 5%.
  8. Ослабление крепления обмоток статора – 4%. 9. Дисбаланс ротора электродвигателя – 3%. 1
  9. Несоосность валов – 2%.

Ниже приведено краткое описание некоторых неисправностей в электродвигателях, возможные причины их возникновения.

Двигатель при пуске не вращается или скорость его вращения ненормальная. Причинами указанной неисправности могут быть механические и электрические неполадки.

К электрическим неполадкам относятся: внутренние обрывы в обмотке статора или ротора, обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре.

При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать.

Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора.

Совет

В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет вращаться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения — ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром. Обмотку разъединяют и измеряют сопротивление каждой фазы.

Скорость вращения двигателя при полной нагрузке ниже номинальной может быть из-за пониженного напряжения сети, плохих контактов в обмотке ротора, а также из-за большого сопротивления в цепи ротора у двигателя с фазным ротором. При большом сопротивлении в цепи ротора возрастает скольжение двигателя и уменьшается скорость его вращения.

Сопротивление в цепи ротора увеличивают плохие контакты в щеточном устройстве ротора, пусковом реостате, соединениях обмотки с контактными кольцами, пайках лобовых частей обмотки, а также недостаточное сечение кабелей и проводов между контактными кольцами и пусковым реостатом.

Плохие контакты в обмотке ротора можно выявить, если в статор двигателя подать напряжение, равное 20—25% номинального. Заторможенный ротор медленно поворачивают вручную и проверяют силу тока во всех трех фазах статора. Если ротор исправен, то при всех его положениях сила тока в статоре одинакова, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора.

Плохие контакты в пайках лобовых частей обмотки фазного ротора определяют методом падения напряжения. Метод основан на увеличении падения напряжения в местах недоброкачественной пайки.

При этом замеряют величины падения напряжения во всех местах соединений, после чего результаты измерений сравнивают.

Пайки считаются удовлетворительными, если падение напряжения в них превышает падение напряжения в пайках с минимальными показателями не более чем на 10%.

У роторов с глубокими пазами может также происходить разрыв стержней из-за механических перенапряжений материала. Разрыв стержней в пазовой части короткозамкнутого ротора определяют следующим образом. Ротор выдвигают из статора и в зазор между ними забивают несколько деревянных клиньев, чтобы ротор не мог повернуться.

К статору подводят пониженное напряжение не более 0,25 Uном. На каждый паз выступающей части ротора поочередно накладывают стальную пластину, которая должна перекрывать два зубца ротора. Если стержни целые, пластина будет притягиваться к ротору и дребезжать. При наличии разрыва притяжение и дребезжание пластины исчезают.

Двигатель вращается при разомкнутой цепи фазного ротора. Причина неисправности — короткое замыкание в обмотке ротора.

При включении двигатель медленно вращается, а его обмотки сильно нагреваются, так как в замкнутых накоротко витках вращающимся полем статора наводится ток большой величины.

Короткие замыкания возникают между хомутиками лобовых частей, а также между стержнями при пробое или ослаблении изоляции в обмотке ротора.

Обратите внимание

Это повреждение определяют тщательным внешним осмотром и измерением сопротивления изоляции обмотки ротора. Если при осмотре не удается обнаружить повреждение, то его определяют по неравномерному нагреву обмотки ротора на ощупь, для чего ротор затормаживают, а к статору подводят пониженное напряжение.

Равномерный нагрев всего двигателя выше допустимой нормы может получиться в результате длительной перегрузки и ухудшения условий охлаждения. Повышенный нагрев вызывает преждевременный износ изоляции обмоток.

Местный нагрев обмотки статора, который обычно сопровождается сильным гудением, уменьшением скорости вращения двигателя и неравномерными токами в его фазах, а также запахом перегретой изоляции.

Эта неисправность может возникнуть в результате неправильного соединения между собой катушек в одной из фаз, замыкания обмотки на корпус в двух местах, замыкания между двумя фазами, короткого замыкания между витками в одной из фаз обмотки статора.

При замыканиях в обмотках двигателя вращающимся магнитным полем в короткозамкнутом контуре будет наводиться э. д. с, которая создаст ток большой величины, зависящий от сопротивления замкнутого контура.

Поврежденная обмотка может быть найдена по величине измеренного сопротивления, при этом поврежденная фаза будет иметь меньшее сопротивление, чем исправные. Сопротивление измеряют мостом или методом амперметра — вольтметра.

Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение.

При соединении обмоток в звезду ток в поврежденной фазе будет больше, чем в других. Если обмотки соединены в треугольник, линейный ток в двух проводах, к которым присоединена поврежденная фаза, будет больше, чем в третьем проводе.

При определении указанного повреждения у двигателя с короткозамкнутым ротором последний может быть заторможенным или вращаться, а у двигателей с фазным ротором обмотка ротора может быть разомкнута.

Поврежденные катушки определяют по падению напряжения на их концах: на поврежденных катушках падение напряжения будет меньше, чем на исправных.

Местный нагрев активной стали статора происходит из-за выгорания и оплавления стали при коротких замыканиях в обмотке статора, а также при замыкании листов стали вследствие задевания ротора о статор во время работы двигателя или вследствие разрушения изоляции между отдельными листами стали. Признаками задевания ротора о статор являются дым, искры и запах гари; активная сталь в местах задевания приобретает вид полированной поверхности; появляется гудение, сопровождающееся вибрацией двигателя. Причиной задевания служит нарушение нормального зазора между ротором и статором в результате износа подшипников, неправильной их установки, большого изгиб вала, деформации стали статора или ротора, одностороннего притяжения ротора к статору из-за витковых замыканий в обмотке статора, сильной вибрации ро-тора, который определяют щупом.

Ненормальный шум в двигателе. Нормально работающий двигатель издает равномерное гудение, которое характерно для всех машин переменного тока.

Важно

Возрастание гудения и появление в двигателе ненормальных шумов могут явиться следствием ослабления запрессовки активной стали, пакеты которой будут периодически сжиматься и ослабляться под воздействием магнитного потока.

Для устранения дефекта необходимо перепрессовать пакеты стали. Сильное гудение и шумы в машине могут быть также результатом неравномерности зазора между ротором и статором.

Повреждения изоляции обмоток могут произойти от длительного перегрева двигателя, увлажнения и загрязнения обмоток, попадания на них металлической пыли, стружек, а также в результате естественного старения изоляции. Повреждения изоляции могут вызвать замыкания между фазами и витками отдельных катушек обмоток, а также замыкание обмоток на корпус двигателя.

Увлажнение обмоток происходит в случае длительных перерывов в работе двигателя, при непосредственном попадании в него воды или пара в результате хранения двигателя в сыром неотапливаемом помещении и т. д.

Металлическая пыль, попавшая внутрь машины, создает токопроводящие мостики, которые постепенно могут вызвать замыкания между фазами обмоток и на корпус.

Необходимо строго соблюдать сроки осмотров и планово-предупредительных ремонтов двигателей.

Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0,5 Мом при рабочей температуре обмоток. Замыкание обмотки на корпус двигателя обнаруживают мегаомметром, а место замыкания — способом «прожигания» обмотки или методом питания ее постоянным током.

Способ «прожигания» заключается в том, что один конец поврежденной фазы обмотки присоединяют к сети, а другой — к корпусу. При прохождении тока в месте замыкания обмотки на корпус образуется «прожог», появляются дым и запах горелой изоляции.

Двигатель не идет в ход в результате перегорания предохранителей в обмотке якоря, обрыва обмотки сопротивления в пусковом реостате или нарушения контакта в подводящих проводах. Обрыв обмотки сопротивления в пусковом реостате обнаруживают контрольной лампой или мегомметром.

Заводы-изготовители электродвигателей в своих инструкциях по эксплуатации обычно приводят перечень основных неисправностей, которые могут иметь место при работе электродвигателя, и дают рекомендации по их устранению.

Источник: http://malahit-irk.ru/index.php/2011-01-13-09-04-43/178-2011-06

Ссылка на основную публикацию
Adblock
detector