Реверсивный пуск двигателя – советы электрика

Реверс асинхронного двигателя

Так вышло, что трех фазные асинхронные электродвигатели, а так же их реверс стали самой распространенной электрической машиной. 

В зависимости от механизма, который приводится во вращение этим электродвигателем, может возникнуть необходимость в изменении направления вращения механизмов, а, следовательно, и вала двигателя, в нашем случаи трех фазного асинхронного электродвигателя.

Все наверняка известна вот эта схема:

shema puska ad

Теоретически, для изменения направления вращения вала (реверса) электродвигателя необходимо всего на всего поменять местами две фазы. Стоит отметить, что не имеет значения какие фазы мы будим менять, но на будущее принято менять две крайние фазы, то есть фазу «А» с фазой «В».

Обратите внимание

Для выполнения таких манипуляций с электродвигателем, выше предоставленной схеме необходимо видоизменить – переделать, доработать. Для этого понадобится еще один магнитный пускатель, или же контактор (зависит от мощности), а также кнопочная станция, состоящая из трех кнопок, или же три кнопочных контакта два нормально разомкнутых (замыкающих), и один нормально разомкнутый.

Эта схема  будит выглядеть следующим образом. Реверс.

revers dvigatela

 Для наглядности каждая фаза выделена своим цветом: желтым фаза «А», зеленым фаза «В» и красным фаза «С», синим цветом выделена цепь управления. Так же линии, окрашенные в черный цвет, не находятся под напряжением.

Как вы уже заметили это схема реверса  существенно не отличается от простой схемы пуска асинхронного двигателя.

Все изменения сводятся к магнитному пускателю КМ2, нормально разомкнутому контакту кнопки SB2.

Стоит отметить и наличие электрической блокировки, которая выражается блок контактами магнитных пускателей, включенных в цепь управления. 

elektriceskaia-blokirovka

Как и элементарная схема пуска асинхронного двигателя, схема этого же двигателя состоит из следующих элементов (устройств):

  • Вводной автомат АВ1 – через него подается трехфазное напряжение силовой цепи и цепи управления;
  • Два магнитных пускателя КМ1 и КМ2 через силовые контакты которых, подается питание на статор. Их блок контакты включены в цепь управления для выполнения подхвата и электрической блокировки. Катушки этих пускателей также включены в цепь управления. Нужно сказать, что каждый из магнитных пускателей отвечает за определенное вращение ротора . Например, питание подаётся через магнитный пускатель КМ1, то вал электродвигателя будит вращаться по часовой стрелке (вперед), если же питание подаётся через силовые контакты магнитного пускателя КМ2, то вал асинхронного двигателя будит вращаться против часовой стрелки (назад).

В данной схеме используются катушки магнитных пускателей, рассчитанные на линейное напряжение 380В. Если же катушки магнитных пускателей были рассчитаны на фазное напряжение сети 220В, то схема  выглядела следующим образом:

revers dvigatela katuschka 220 volt

  • Тепловое реле КК – биметаллические пластины, которого включены последовательно в цепь статора, а блок контакт вцепи управления. Служит для защиты от перегрузки.
  • Двухполюсный автомат АВ2 – подает питание в цепь управления. Также совместно с автоматом или без него может устанавливаться ключ бирка.
  • Нормально разомкнутые контакты SB1 и SB2 – это кнопки пуск, каждая из которых соответствует направлению вращения вала электродвигателя (вперед и назад).
  • Нормально замкнутый контакт SB3 – кнопка стоп.
  • Ну и сам трех фазный асинхронный двигатель Д;

Работа схемы

Для того, чтобы привести схему в готовность к пуску, необходимо включить вводной автомат АВ1 и автомат в цепи управления АВ2. 

АВ2 zamknut

В таком состоянии схема реверса асинхронного двигателя готова к пуску.

При этом напряжение в силовой цепи подается через вводный автоматический выключатель АВ1 на верхние губки магнитных пускателей КМ1 и КМ2, а в цепи управления, через автомат АВ2, через нормально замкнутый контакт кнопки SB3 подаётся напряжение на нормально разомкнутые контакты кнопок SB1 и SB2, а также на нормально разомкнутые блок контакты магнитных пускателей КМ1 и КМ2.

SB1 zamknut

Для запуска  необходимо нажать одну из кнопок пуск SB1 или SB2 (допустим была нажата кнопка SB1). 

Важно

После замыкания контакта кнопки SB1, напряжение через замкнутый блок контакт блокировки магнитного пускателя КМ2, через катушку магнитного пускателя КМ1, через блок контакт КК, через автоматы АВ2 и АВ1 выйдет на фазу «С». Образуется замкнутая цепь, по которой начнет протекать переменный ток.

Проходя через катушку магнитного пускателя КМ1, она образует магнитное поле, которое втянет якорь магнитного пускателя КМ1, при этом его силовые контакты замкнутся, вследствие чего асинхронный электродвигатель получит питание, по его обмоткам начнет протекать ток, и он запустится, ротор будит вращаться.

При срабатывании магнитного пускателя, его разомкнутый контакт в цепи управления замкнется, он шунтирует кнопку SB1, то есть ток будит протекать параллельно пусковой кнопки, так что при отпускании пусковой кнопки машина не остановится не остановится.

Так же в цепи пусковой кнопки SB2 разомкнется блок контакт магнитного пускателя КМ1, этим исключит возможность срабатывания второго магнитного пускателя КМ2, что вызовет межфазное короткое замыкание. Все перечисленное происходило при нажатии кнопки «Пуск», замыкания контакта SB1.

Чтобы остановить двигатель, необходимо нажать кнопку «Стоп», то есть разомкнуть контакт кнопки SB3.

SB3 razomknut

  Вследствие чего цепь, в которую включены катушки будит разомкнута, электрический ток не будит по ним протекать. Магнитный пускатель разомкнет свои силовые контакты, из-за чего двигатель потеряет питание и остановится.

При этом нормально разомкнутый блок контакт КМ1 (подхват) разомкнется, это приведет к тому, что при возврате кнопки SB3 двигатель не запуститься снова.

Так же нормально замкнутый блок контакт электрической блокировки КМ1 в цепи катушки магнитного пускателя КМ2 замкнется, обеспечивая возможность включения обратного хода. Схема вернется в состояние готовности очередному пуску двигателя.

Если же мы замкнем контакт SB2, произойдут те же действия что и при замыкании контакта SB1, но с другим магнитным пускателем КМ2, и направление вращения вала асинхронного двигателя будит обратным.

Мы видим, что магнитный пускатель КМ2 включен в цепи так, что фазы «А» и «С» поменяны местами, это и гарантирует изменение направления вращения вала.

Для остановки необходимо так же разомкнуть контакт кнопки SB3.

Эта схема сложнее схемы обычного пуска асинхронного двигателя, я посоветую для начала разобраться в более легкой, а затем приступать к этой.

Совет

Главной особенностью данной схемы управления двигателем является — минимум сложных манипуляций.

Источник: http://white-santa.ru/revers_dvigatela/

Реверсивная и нереверсивная схема подключения пускателя

Магнитный пускатель – это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя (электродвигатели, электрические ТЭНы, электрокотлы и так далее). Перед тем как разбираться в теме статьи – схема подключения пускателя, необходимо понять принцип его работы.

В основном магнитные пускатели используются сегодня для управления двигателей асинхронного типа. С его помощью производится «пуск», «стоп» и реверс мотора. Но есть еще один момент, который не надо упускать из вида. Это возможность разгружать маломощные электрические сети, где установлены обычные автоматические выключатели (автоматы). Для того чтобы это понять, необходимо привести пример.

Если в распределительном щите установлен автомат номиналом 10 ампер, то его пропускная мощность рассчитывается по закону Ома: P=UI=220х10=2200 Вт или 2,2 кВт. По сути, такой автомат может выдержать освещение, в котором присутствует двадцать две лампочки по 100 ватт каждая.

Чтобы увеличить мощность потребления электрической цепочки, к примеру, в два раза, не стоит разделять ее на участки, куда придется устанавливать несколько автоматических выключателей и делать монтаж отдельной электропроводки.

Достаточно установить магнитный пускатель, к примеру, третьей величины.

У такого прибора контакты рассчитаны на 40 ампер. Отсюда и возможность выдерживать потребляемую мощность: 40х220=8800 Вт или 8,8 кВт. То есть, соединив последовательно 88 лампочек мощностью по 100 Вт, можно одним щелчком включать и отключать их одновременно.

В основе конструкции магнитного пускателя лежит электромагнитная катушка. Так вот в момент пуска (включения) прибор потребляет 200 ватт. В рабочем состоянии мощность не превышает 25 Вт. Даже если рассчитать силу тока в момент пуска, то на будет незначительных параметров: 200 Вт/220 В = 0,9 ампер.

Обратите внимание

То есть, этой величины достаточно, чтобы прибор включил основную электрическую цепь. Получается так, что даже самый небольшой магнитный пускатель может легко управлять автоматом. При этом на контактах последнего всегда будет сниженный ток, что не приведет к их подгоранию.

А, значит, автоматический выключатель будет отключать своими контактами достаточно большие мощности.

Тепловое реле в пускателе

Это обязательная составляющая часть пускателя, которая будет отключать сеть от перегрузов и от неполнофазного режима (когда отсутствует одна из трех фаз). Причины последнего – большое разнообразие.

  • От вибрации открутился соединительный винтик.
  • Подгорел контакт.
  • Перегорела вставка (плавкая) на фазе.
  • Некачественный неплотный контакт.

Источник: http://OnlineElektrik.ru/eprovodka/zashhita/reversivnaya-i-nereversivnaya-sxema-podklyucheniya-puskatelya.html

Реверс электродвигателя

Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что ликвидируется паразитное намагничивание, вызывающее перегрев и потерю мощности электрической машиной.

Кроме того, схемы реверсивного пуска намного проще, чем механические трансмиссии, состоящие из системы зубчатых шестерней. Наибольшее число вопросов вызывает способ изменения направления вращения двигателей переменного тока, ведь изменить полярность питающего напряжения невозможно.

В этой статье мы представим вам основные схемные решения для запуска асинхронных и коллекторных электродвигателей, в которых предусмотрена возможность их реверсирования.

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником.

Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее.

Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6.

Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей.

Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.
Читайте также:  Прибор для проверки заземления - советы электрика

Подробнее о схемах подключения магнитных пускателей для  трехфазных электродвигателей читайте здесь.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

  • Сетевое напряжение подается на клеммы W2 и V1.
  • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
  • Концы второй обмотки подключают к клеммам W2 и V2.
  • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
  • Клемма W1 остается свободной.

Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

Реверс коллекторных двигателей

Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется.

Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря.

Важно

Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

  1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
  2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.

Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

Источник: https://electriktop.ru/baza-znaniy/revers-elektrodvigatelya.html

Реверсивная схема подключения электродвигателя

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного  конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

  • Автомат;
  • Кнопочный пост;
  • Контакторы.

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода.

Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено».

На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Источник: http://ElectricDoma.ru/elektrodvigateli/reversivnaya-shema-podklyucheniya-elektrodvigatelya/

Схема реверсивного пускателя

Главная > Теория > Схема реверсивного пускателя

Для пуска, остановки моторов, управления рабочими процессами, совершаемыми электродвигателями, применяются магнитные пускатели – аппараты, конструктивное исполнение которых позволяет включать и отключать электроцепи с протекающим значительным током.

Магнитные пускатели

Как устроен магнитный пускатель

Контакторы, как и пускатели, замыкают и размыкают электроцепи, но в устройстве аппаратов имеются различия. Контактор служит в качестве основного компонента магнитного пускателя. Он обладает тремя полюсами. Кроме него устройство содержит защитную часть и пост с кнопками для ручного управления.

Закрытие контактов пускателя обеспечивается электромагнитом. В нормальном состоянии контакты разомкнуты, а при протекании тока через катушку происходит притяжение якоря и замыкание силовой контактной группы.

Устройство магнитного пускателя

Назначение отдельных элементов:

  1. Кнопочный узел. Обычный пускатель оснащен двумя кнопками: пуска и останова. Реверсивный аппарат имеет три. Третья служит для того, чтобы произвести запуск электромотора с обратным направлением вращения. Иногда электроаппарат оснащается сигнальными лампами. С помощью кнопок осуществляется активация контактора;
  2. Для выполнения других операций могут служить вспомогательные нормально закрытые или открытые контакты;
  3. Управляющий электромагнит. Напряжение на нем может быть идентичным напряжению на силовых контактах. Иногда цепи электромагнита питаются от 220 В переменного тока. Когда катушка активирована, в результате возникновения магнитной связи происходит притяжение якоря, и силовые контакты включаются. Ток течет к двигателю или другой нагрузке. При обесточивании электромагнита пружина заставляет контакты размыкаться, отключая электромотор;
  4. Тепловое реле. Служит для защиты двигателя от повреждений в случае короткого замыкания или перегрева, связанного с перегрузкой. Обычно это биметаллическая пластина, которая, изгибаясь при нагревании, размыкает электроцепь, снимая питание с электромагнита.

Подключение обычного пускателя

Подключение обычного пускателя

На электросхеме подключения магнитного пускателя обозначены:

  • QF1 – автомат для подачи питания на аппарат;
  • КМ – катушка электромагнита;
  • КМ1 и КМ1.1 – контакты катушки;
  • кнопки пуска и останова;
  • М – асинхронный электромотор.

Этапы работы схемы:

  1. Включением QF1 и затем пусковой кнопки подается напряжение на КМ;
  2. Электромагнит включает свои силовые контакты КМ1, подавая питающее напряжение на электромотор;
  3. Одновременно включается вспомогательный контакт КМ1.1, который производит блокировку пусковой кнопки, позволяя току течь и при ее отпускании;
  4. Для останова электромотора достаточно нажать на соответствующую кнопку, разрывающую питающую цепь электромагнита, якорь которого пружины возвращают на место, и силовые контакты КМ1 также отключаются.

Включением вспомогательного контакта КМ1.1 выполняется нулевая защита электромотора. При пропадании питания питающей сети или резком снижении напряжения до 0,6 Uн силовые и вспомогательный контакты электромагнита отключатся.

Читайте также:  Виды скруток проводов - советы электрика

Важно! Когда электропитание восстановится, запуск электромотора не состоится без повторного нажатия пусковой кнопки. Если используются другие коммутационные аппараты, например, рубильник, то произойдет самопроизвольный запуск мотора, что может спровоцировать аварийную ситуацию.

Подключение реверсивного пускателя

Для выполнения обратного вращения электромотора применяется схема реверс. В конструкцию реверсивного магнитного пускателя добавляются еще один пускатель с тремя полюсами и кнопка для запуска обратного вращения.

Подключение реверсивного пускателя

Основные принципы работы схемы реверсивного пускателя:

  • двигательный реверс осуществляется при включении двух фаз наоборот;
  • должно быть выполнено схемное блокирование для недопущения одновременного подключения обеих силовых контактных групп во избежание короткого замыкания.

Поэтапная работа схемы:

  1. При подключении автомата QF производится подача напряжения на схему;
  2. Нажимается копка прямого запуска. Электромагнит КМ1 получает напряжение, и включается его силовая контактная группа. Одновременно дополнительный контакт КМ1.1 шунтирует пусковую кнопку, а другой контакт КМ1.2, будучи в нормальном состоянии замкнутым, отключается, разрывая питающую электроцепь контактора КМ1. Электромотор вращается в прямом направлении;

Важно! Запуск реверсивного вращения невозможен без останова двигателя.

  1. Нажатием остановочной кнопки разрывается общая питающая цепь обоих электромагнитов, и пружины разъединяют силовые контакты КМ1. Мотор останавливается;
  2. Теперь можно задействовать кнопку реверсивного пуска. Она подает питание на второй электромагнит КМ2. Включаются силовая контактная группа КМ2, а также дополнительные контакты. При этом КМ2.1 осуществляет блокирование кнопки реверсного вращения, а КМ2.2 разъединяет питающую электроцепь КМ1.

Важно! Чтобы схема работала безошибочно, надо обеспечить размыкание силовой контактной группы КМ1 не позднее, чем замкнутся дополнительные контакты КМ1.2 в питающей электроцепи КМ2. Для этого производят механическое регулирование контактов по якорному ходу.

В некоторых схемах пускателей выполняется двойное блокирование. Иногда дополнительно используется механическое блокирование с помощью перекидывающегося рычага.

Особенности подключения силовых контактов

Частота вращения: формула

Из схемы реверсивного магнитного пускателя видно, что фаза А силовых контактов обоих пускателей соединяется без изменений. А две другие фазы перевернуты наоборот. Фаза В подсоединена к фазе С, а фаза С – к фазе В. В результате на электромоторе меняется чередование фаз, и он вращается в обратном направлении.

Соединение контактов реверсивного пускателя

Подсоединение пускателя:

  1. Фаза А питающего напряжения подсоединяется к крайнему слева входному контакту первого пускателя и затем к аналогичному контакту второго;
  2. Выход этого контакта от первого пускателя соединяется с аналогичным выходом первого и далее идет к электромотору;
  3. Фаза В питающего напряжения подключается к среднему контакту первого пускателя, а далее соединяется с крайним правым контактом второго;
  4. Выход данного контакта от второго пускателя подключается к крайнему правому выходу первого пускателя. Таким образом, фаза В питания занимает место С-фазы;
  5. C-фаза питания подводится к крайнему правому входному контакту первого пускателя, затем соединяется со средним входным контактом второго пускателя;
  6. Средний выходной контакт второго пускателя надо соединить со средним выходным контактом второго пускателя, и С-фаза на двигатель поступит вместо В-фазы.

Как правильно установить магнитный пускатель

Схема подключения дифференциального автоматического выключателя

Корректная схема подключения – главное, но не единственное условие стабильной и безопасной работы оборудования. Необходимо обеспечить правильную эксплуатацию аппаратов.

Реверсивный магнитный пускатель

  1. Для монтажа магнитных пускателей должны использоваться места с минимальной вибрацией и сотрясениями. Следует учитывать, что большие пусковые токи вызывают вибрацию электромоторов;
  2. Для исключения ложного срабатывания термореле необходимо устанавливать электроаппараты вдали от источников сильного нагрева;
  3. Монтаж производится на вертикальном основании, которое должно быть ровным и не допускать смещений в разные стороны;
  4. Зачищенным концам подсоединяемого проводника придается кольцевая форма, так как в противном случае зажимные шайбы смогут перекоситься.

Важно! Накануне первого пуска производится тщательная проверка самого магнитного пускателя, свободы перемещения его подвижных элементов. Смазка подвижных компонентов, как и контактов, не разрешается.

Возможные дефекты магнитных пускателей и их причины:

  1. Сильный нагрев аппарата. Причинами могут быть межвитковое замыкание в катушке (в этом случае она подлежит замене), повышенное напряжение, нарушение плотного соприкосновения контактов;
  2. Гудение. Происходит, когда якорь прилегает не плотно. Причины кроются в попадании грязи, пониженном сетевом напряжении, нарушении подвижности компонентов.

Периодические осмотры и обнаружение дефектов являются гарантией, что не произойдет серьезных поломок, которые отразятся на работе подсоединяемого оборудования. Для этого производятся своевременная чистка аппаратов, регулирование контактов, проверка состояния катушки и якоря, измерение сопротивления изоляции.

Видео

Источник: https://elquanta.ru/teoriya/skhema-reversivnogo-puskatelya.html

Подключение реверсивного магнитного пускателя

Реверсивный пускатель часто встречается в оборудовании, обеспечивающем работу механизмов и агрегатов, в которых есть функциональное назначение изменения вращения вала электрического двигателя. Схема подключения магнитного пускателя с реверсивным пуском электродвигателя всегда является предметом изучения электриков-любителей и профессионалов для создания собственных конструкций.

В промышленности существует два вида магнитных пускателей: для прямого пуска асинхронного электродвигателя, а также для реверсного пуска электрического двигателя.

Нереверсивное подключение электродвигателя

Специалисты для лучшего понимания реверсного пуска электродвигателя предлагают рассмотреть, как работает нереверсивная схема включения электрического двигателя. В конкретном примере рассматривается пускатель с катушкой управления 220 вольт. Электродвигатель подключается к цепи по следующей цепочке:

  • автоматический трехфазный выключатель;
  • силовые клеммы пускателя (КМ);
  • тепловое реле (ТР).

Катушка управления пускателя (КМ) с одной стороны подключена к рабочему нулю, а другая сторона через цепочку кнопок управления «Пуск» и «Стоп» — к фазе цепи.

Подключение катушки 220 вольт

Пост управления (КМ) имеет две кнопки: «Пуск» и «Стоп»:

  • у кнопки «Пуск» контакты нормально разомкнутого вида;
  • у кнопки «Стоп» контакты нормально замкнутого вида.

Нормально разомкнутый контакт катушки управления включается параллельно пусковой кнопке. Тепловое реле в этой схеме играет для электродвигателя защитную функцию от перегрузки и включено в разрыв питающей фазы. Контакт нормально замкнутый (ТР) включается в цепь катушки управления (КМ).

После включения автоматического трехфазного выключателя напряжение поступает на силовые контакты пускателя и в управляющую цепь катушки — схема приведена в рабочее состояние.

Нереверсивный запуск

Для осуществления пуска электрического двигателя оператору необходимо нажать кнопку «Пуск», тогда в управляющую цепь катушки поступает напряжение, цепь замыкается и срабатывает, втягивая якорь с одновременным замыканием шунтирующего контакта катушки управления. Силовые контакты электрического двигателя получают питание, он начинает вращаться.

Когда оператор отпускает кнопку «Пуск», обмотка (КМ) получает питание от его вспомогательного контакта, двигатель работает.

Остановка

Оператору для остановки нереверсивного двигателя надо нажать кнопку «Стоп», в этом случае происходит разрыв питания катушки управления (КМ), шунтирующий контакт размыкается, якорь катушки приходит в начальное положение, тем самым размыкая силовые контакты. На электродвигателе пропадает напряжение, он останавливается.

Кода отпускается кнопка «Стоп», контакт управляющей обмотки остается разомкнутым, ожидая следующего пуска электросхемы.

Как происходит защита двигателя при нереверсивном пуске

Защита электрического двигателя реализуется при помощи биметаллических контактов (ТР), они изгибаются при увеличении тока, и расцепитель воздействует на контакт в пусковой обмотке, прекращая подачу электрической энергии. Все контакты пускателя (КМ) возвращаются в начальное положение, а двигатель останавливается. Ниже представлена принципиальная схема подключенного электродвигателя с защитой.

Установка монтажных предохранителей в цепочку защиты

В схеме защиты работы электрического двигателя предусматривается дополнительная защита управления пуском и остановкой механизма, это включение в цепь предохранителя, который реагирует на межвитковое замыкание катушки управления пускателя (КМ).

Устройство магнитного пускателя для реверсного пуска

Реверсивный магнитный пускатель имеет функциональное назначение — запуск электрического двигателя, а также других механизмов, у которых есть функциональное назначение работы в прямом и обратном направлении с изменением вращения вала двигателя. Пускатель выполняет коммутационную функцию силовыми контактами и подачу напряжения на двигатель.

В отличие от контакторов пускатель используется как защита при частых пусках и остановках механизмов и устройств. Пускатели марки ПМЛ широко применяются в схемах реверса трехфазного двигателя для реализации дистанционного пуска в насосных станциях, в башенных кранах и вентиляционных системах, в других механизмах.

Пускатель марки ПМЛ

Магнитный пускатель в своей конструкции имеет следующие функциональные составляющие:

  • электромагнитная часть с катушкой и подвижным якорем,  нормально разомкнутый магнитопровод;
  • главные силовые контакты, назначение которых — соединение и отключение фаз электродвигателя при пуске и остановке. Реверсивные магнитные пускатели в своем устройстве могут иметь контакты в верхней части конструкции и на стороне обмотки якоря (КМ);
  • блок-контакты функционально предназначены для коммутации цепи управления;
  • переход в начальное положение пускатель осуществляет при помощи возвратного механизма, это пружина, которую якорь катушки управления (КМ) возвращает в начальное положение, размыкая все контакты.

Как подключается реверсивный пускатель

Схема подключения реверсивного магнитного пускателя необходима для работы электрического двигателя в прямом, а также в обратном направлении. Подключить этот вид пускового устройства для специалиста не составит труда.

Очень часто в промышленности реверсивное подключение используется для работы станочного оборудования разного вида (сверлильный, токарный станок и др.). Реверсивная схема реализуется в работе лифтов не бытового назначения.

Схема реверсивного пуска асинхронного двигателя

Реверсивные пускатели имеют отличие в подключении, это дополнительная цепочка управления, а также разница соединения силовой части.

Совет

В схеме реализована защита от короткого замыкания, это контакты КМ1.2 и КМ2.2, которые имеют нормально замкнутый вид и размещены на пускателях КМ1 и КМ2.

Реверсивная схема, представленная на фото, имеет цветовое отличие силовой и управляющей цепей:

Реверсивная схема подключения двигателя

Как происходит включение

Схему реверса асинхронного двигателя можно образно разбить на этапы включения: выключатель (QF1) переводим в рабочее положение, в этом случае все реверсивные магнитные пускатели на силовых контактах получают напряжения КМ1 и КМ2 и остаются в таком положении.

Одна фаза задействована в цепи управления обмоток пускателей, ее прохождение:

  • защитный автомат (SF1) — кнопка «Стоп» (SB1) — контактная группа №3 (функционируют с кнопками (SB2) и (SB3);
  • контакт 1ЗНО в пускателях КМ1 и КМ2 становится в ожидание — у него дежурное значение;
  • пускатель реверсивный готов к работе.

Схема подключения электродвигателя

Как происходит переключение

Схема реверса электродвигателя предусматривает следующие манипуляции в пускателе: когда оператор нажимает кнопку SB2, он дает питание управления катушкой пускателя (КМ1), далее срабатывают нормально разомкнутые контакты и размыкаются нормально замкнутые контакты в конфигурации КМ1, катушка обеспечивает «подпитку», и питание через силовые контакты поступает на мотор, он начинает вращение.

Если возникла рабочая необходимость сделать реверс электродвигателя, оператору надо поменять приложение силовых контактов (фаз), это реализуется при помощи КМ2.

Важно! Всегда, когда делается подключение двигателя для обратного вращения, должна происходить его остановка, это достигается отключением в управлении обмотки КМ1 фазы №1, контакты пускателя занимают начальное положение, электродвигатель обесточен.

Оператор, нажимая кнопку SB3, подает питание на управление обмоткой КМ2, а оно изменяет включение силовых контактов «фаза №2» и «фаза №3» для подключения трехфазного электродвигателя. Он начинает вращение в другом направлении до тех пор, пока не произойдет размыкание контактов управления обмоткой.

Читайте также:  Разводка электропроводки в квартире - советы электрика

Защита работы реверсного включения электродвигателя

Всегда, перед тем как изменить порядок подключения 3-фазного двигателя, изменяя порядок фаз на обмотках электродвигателя, надо его остановить.

Это реализуют в схеме включения нормально замкнутые контакты, которые «подстраховывают» работу оператора и не допускают межфазного замыкания в электрическом двигателе, когда происходит реверсирование его подсоединения.

В рассмотренной схеме подключения реверсного пускателя видно, что работать может только один пускатель.

Ежедневно происходит работа по подключению электродвигателей прямого и обратного вращения, схема включения пускателей не составляет сложностей для квалифицированных электриков. Необходимо всегда помнить, что должна реализовываться функция остановки двигателя перед его обратным вращением.

Источник: https://domelectrik.ru/oborudovanie/dvigatel/puskatel-reversivnyy

Электродвигатель с реверсом

Загрузка…

+59

   Иногда нам бывает необходим электродвигатель с управлением направления вращения вала (реверс) , т.е. чтобы он вращался в одном или обратном направлении . Такой электродвигатель бывает нужен для кран-балки , гаражных ворот , насосов и т.д.

   У нас есть электродвигатель , теперь необходимо сделать электрический реверс . Для реверса нам понадобятся два магнитных пускателя , две кнопки “пуск” и одна кнопка “стоп” , и тепловое реле . Магнитные пускатели и тепловое реле подбираем исходя из мощности (Вт) электромотора .

Сами магнитные пускатели должны быть с блоками-контактов . Блок-контакт – это дополнительные контакты , которые либо смыкаются , либо размыкаются при срабатывании катушки магнитного пускателя .

Три кнопки (две “пуск” и одна “стоп”) , объеденённых в одном корпусе , можно приобрести в магазине , либо сделать самостоятельно .

   Для электрического реверса нам понадобится вот эта схема :

   Теперь давайте разберёмся в ней детально .

   Магнитные пускатели (КМ1 и КМ2) . На электродвигатель подали напряжение : пофазно  А В С , через магнитный пускатель КМ1 . Для того , чтобы двигатель начал вращаться в противоположную сторону , нам необходимо изменить фазировку его питающего напряжения .

Говоря проще , поменять местами две фазы : А с В или В с С , или А с С . Вот для этого нам и понадобится второй магнитный пускатель КМ2 . С пускателя КМ1 напряжение подаётся – А В С . А с пускателя КМ2 – С В А . Т.е. фазы поменялись и поменялось направление вращения электродвигателя .

Это и есть реверс .

   Кнопка “Стоп” . Она необходима для остановки вращения вала , т.е. для отключения электромотора . Кнопка “Стоп” разрывает цепь подачи напряжения на катушки магнитных пускателей к.Км1 и к.КМ2 .

   Кнопки “Пуск” . Они замыкают цепь , попеременно, и напряжение подаётся на катушки магнитных пускателей к.КМ1 и к.КМ2 .

  Блок – контакты на магнитных пускателях (б.к.КМ1 и б.к.КМ2) . Они нам необходимы для предотвращения включения обоих магнитных пускателей одновременно , что приведёт к короткому замыканию . Т.е.

Обратите внимание

когда мы включаем кнопку “Пуск 2 ” (см.схему) , то блок-контакт КМ2 размыкает цепь и напряжение не может быть подано на катушку КМ1 .

И наоборот , когда мы нажимаем на кнопку “Пуск 1” , то блок-контак КМ1 разорвёт цепь на катушку КМ2 .

   Тепловое реле ТР . Оно необходимо для отключения электродвигателя в случае нагревания обмоток электромотора , либо электропроводки .

   Не забывайте о том , что для подключения реверсивного электродвигателя вам понадобится автоматический выключатель (автомат) . Он необходим для электробезопасности и аварийного отключения электромотора .

Источник: http://trigada.ucoz.com/publ/ehlektrodvigatel_s_reversom/1-1-0-160

Схемы управления электромагнитными пускателями (контакторами)

Электромагнитные пускатели и контакторы незаменимы в цепях управления силовой нагрузкой. А чтобы правильно применять эти устройства нужно хорошо знать, как они работают и уметь чертить нужные схемы управления под свой конкретный случай.

Электромагнитные контакторы находят даже применение в цепях управления освещением.  Сегодня рассмотрим схемы управления реверсивным и нереверсивным пускателем или контактором. Я даже не знаю, как их можно различать

Для начала хочу сказать несколько слов из чего состоит пускатель. У пускателя можно выделить 3 основных элемента:

  • силовые контакты (как правило их 3) – предназначены для коммутации силовой нагрузки, номинальный ток пускателя относится именно к контактам;
  • электромагнитная катушка – предназначена для управления пускателем, в основном рассчитана на 220 или 380В;
  • дополнительный контакт – предназначен для построения схемы управления или сигнализации о состоянии пускателя (контактора), в пускателях на большие номинальные токи их может быть несколько (замыкающие, размыкающие).

Все эти 3 элемента будут участвовать в схемах управления.

1 Схема управления нереверсивным пускателем (контактором).

Данная схема встречается очень часто. К примеру, в щите устанавливаем пускатель  с тепловым реле для управления электродвигателем, а кнопки управления выводим в нужное нам место. На рисунке ниже представлена схема управления нереверсивным пускателем с катушкой управления на 380В.

Схема управления нереверсивным пускателем (контактором)

При нажатии на кнопку «Пуск» через катушку проходит электрический ток и электромагнит притягивает контакты (силовые и дополнительные). В это время контакт 97-98 замыкается и через него постоянно проходит ток для удержания электромагнита катушки.

При нажатии на кнопку «Стоп» цепь управления катушки разрывается и электромагнит отпускает контакты, которые под действие пружины возвращают их в исходное состояние. Кнопки «Пуск» и «Стоп» без фиксации. В случае перегрузки контакт КК также разрывает цепь катушки.

До кнопочного поста достаточно проложить трехжильный кабель.

2 Схема блокировки двух устройств при помощи контакторов.

Следующая схема применима в том случае, если необходимо выполнить блокировку технологического оборудования №1 пока не включено оборудование №2. Например, зарядное устройство и приточная вентиляция. Включаем вентилятор и только после этого сможем включить зарядное устройство.

Схема блокировки двух устройств при помощи контакторов

Здесь использована предыдущая схема, к которой добавлен вспомогательный дополнительный контакт (приставка контактная, 1з). На линии питания нашего оборудования №1 (в нашем случае это зарядное устройство) устанавливаем контактор. При нажатии кнопки «Пуск» включается вентилятор, контакт 23-24 замыкается и включается контактор на линии №2.

3 Схема управления реверсивным пускателем (контактором). Механическая блокировка.

Реверсивные пускатели применяют для управления задвижками либо для выполнения реверса электродвигателя. Суть в том, что если фазу L1 и L3 (а и b) поменять местами, то двигатель начнет вращаться в противоположную сторону.

Реверсивный пускатель можно собрать из двух обычных пускателей. Главное чтобы была выполнена блокировка. Схема реализации реверсивной схемы на двух контакторах с использованием блокировочного устройства представлена ниже.

Схема управления нереверсивным пускателем (контактором). Механическая блокировка

Важно

Блокировочное устройство предназначено для исключения одновременного включения двух контакторов.

Блокировочное устройство двух контакторов

При нажатии на кнопку, к примеру у нас задвижка, «Открытие» — первый контактор включается (двигатель вращается в одну сторону).

Чтобы задвижку перевести в закрытое состояние должны нажать «Стоп», первый контактор отключится, а затем нажать кнопку «Закрытие» — второй контактор включится. Блокировочное устройство не даст нам одновременно включить два контактора.

В случае задвижки данная схема не очень верна, т.к. в схеме не показаны конечные выключатели (данную тему рассмотрю в другой раз).

4 Схема управления реверсивным пускателем (контактором). Электрическая блокировка.

Сейчас выполним те же функции только применим электрическую блокировку. Для этого к каждому контактору доставим дополнительно по приставке контактной с размыкающим контактом. Дополнительный размыкающий контакт первого контактора ставим последовательно с катушкой управления второго пускателя, аналогично и со вторым контактором.

Схема управления нереверсивным пускателем (контактором). Электрическая блокировка

При включения одного контактора, размыкающий контакт не дает включиться второму контактору.

При использовании пускателей и контакторов с катушками на 220В схемы практически не меняются. Вместо второй фазы используется N.

Итак, я рассмотрел основные схемы управления нереверсивными и реверсивными пускателями (контакторами), а теперь у вас есть уникальная возможность покритиковать мои схемы

Источник: http://220blog.ru/pro-sxemy/sxemy-upravleniya-elektromagnitnymi-puskatelyami-kontaktorami.html

Реверсивный пуск асинхронного трехфазного электродвигателя | Полезные статьи – Кабель.РФ

В процессе эксплуатации трехфазного асинхронного электродвигателя может возникнуть ситуация, когда требуется поменять направление вращения вала.

Процесс реверсивного пуска электродвигателя

Реверсивный пуск трехфазного асинхронного электродвигателя осуществляется посредством предварительной остановки. То есть сначала следует отключить вращающийся двигатель, после чего нужно дождаться полной его остановки. Лишь после остановки двигателя следует включать обратное вращение.

В таком случае пускатель управляет электродвигателем. Мощность пускателя при включении реверса должна быть в 1,5–2 раза больше, чем максимальная коммутационная мощность пускателя. Это во многом зависит от состояния контактов, их устойчивости к износу.

В таком режиме пускатель работает без механической блокировки.

Особенности магнитных пускателей реверсивного пуска

Для осуществления реверсивного пуска применяют специальные пускатели.

Совет

Магнитные пускатели для реверса электродвигателя — это обычные пускатели, которые укреплены на основании двигателя и посредством электрических соединений обеспечивают электрическую блокировку.

Она осуществляется посредством нормально-замкнутых блокировочных контактов, которые есть на пускателях, предотвращающих возможность включения одного пускателя при включенном состоянии другого.

При включении реверсивного магнитного пускателя предусматривается нулевая защита, реализуемая с помощью нормально-открытого контакта пускателя, который предотвращает случайное его включение при возникновении напряжения.

Некоторые реверсивные пускатели также оснащаются блокировкой, располагающейся на основании. Она также необходима, чтобы предотвращать возможное одновременное включение пускателей. Следует отметить, что нормальная электрическая блокировка позволяет отказаться от механической.

Тепловые реле и защита от пыли и влаги

Часто магнитные пускатели имеют защиту от пыли и брызг. Такие варианты оснащаются оболочкой в виде резиновых уплотнений, которая не допускает попадания внутрь прибора пыли и влаги.

Некоторые пускатели имеют также тепловые реле. Они необходимы для обеспечения тепловой защиты электродвигателя от перегрузок, которые длятся недопустимое для данной конструкции время. Тепловые реле защищают трехфазный асинхронный двигатель при обрыве фазы питающего напряжения и при токовой перегрузке большой продолжительности.

Монтаж магнитных пускателей асинхронных электродвигателей

Монтаж магнитных пускателей должен происходить на жесткой, хорошо укрепленной вертикальной поверхности. При наличии теплового реле такие конструкции следует монтировать таким образом, чтобы разность температуры воздуха, который окружает пускатель и электродвигатель, была наименьшей.

Для недопущения случайных срабатываний очень важно не ставить пускатели в тех местах, которые подвержены резким толчкам, ударам и тряске. Важно также, чтобы пускатели не были установлены рядом с приборами, которые отличаются большим тепловыделением.

Обратите внимание

Перед началом использования магнитного пускателя производится наружный осмотр приборов, для того чтобы убедиться в том, что все его части исправны. Также следует проверить номинальное напряжение, которое подается на катушку. Во включенном состоянии допускается небольшое характерное гудение электромагнита.

Уход за магнитными пускателями в процессе эксплуатации

Уход за магнитными пускателями в процессе эксплуатации в первую очередь подразумевает их защиту от попаданий влаги, пыли и грязи. Следует контролировать, чтобы винты контактных зажимов всегда были затянуты. Время от времени нужно проверять состояние контактов. В случае их оплавления последующая зачистка может значительно уменьшить время эксплуатации всего прибора.

Срок службы пускателя во многом зависит от тех условий, в которых он работает, — чем реже им пользуются и чем менее агрессивна окружающая его среда, тем ниже вероятность его поломки.

Источник: https://cable.ru/articles/id-1082.php

Ссылка на основную публикацию
Adblock
detector