Расчет рабочего конденсатора для трехфазного двигателя – советы электрика

Конденсатор для трёхфазного двигателя

Наиболее частым вариантом включения трёхфазного двигателя в однофазную сеть является конденсаторный. В этой статье будут рассмотрены все тонкости и особенности такого включения. После прочтения статьи вряд ли у вас ещё останутся вопросы по выбору конденсатора.

Подключение трёхфазного двигателя через конденсатор в однофазную сеть

Здесь всё довольно просто и не просто. Дело в том, что в момент запуска асинхронного двигателя возникает большой пусковой ток.

Поскольку двигатель это индуктивный элемент, а мы добиваемся определённого сдвига тока посредством конденсатора, то есть добиваемся оптимального баланса индуктивного и ёмкостного тока, то в момент запуска индуктивный ток преобладает над ёмкостным из-за своей большой величины и кругового магнитного поля не возникает.  А для начала вращения вала двигателя нужно именно круговое поле, ну или хотя бы, почти круговое. Поэтому конденсаторы разделяются на пусковые и рабочие.

Рабочий конденсатор для электродвигателя

Назначение этого конденсатора в том, чтобы поддерживать круговое магнитное поле когда двигатель уже находится в рабочем режиме. Конденсатор обязательно должен быть рассчитан на работу в переменном напряжении. Такие конденсаторы обычно называют не электролитические. Напряжение конденсатора должно быть в √2 раз больше напряжения сети.

Тип конденсатора может быть абсолютно любой. Это относится ко всем конденсаторам для переменного напряжения. Мы привыкли считать, что напряжение в сети 220 вольт, однако это действующее значение (усреднённое), а вот максимальное (амплитудное), как раз в √2 раз больше или около 310 вольт.

Чуть позже я напишу статью по действующему и амплитудному значению и более подробно всё разъясню, а пока просто поверьте.

Пусковой конденсатор для электродвигателя

Назначение этого конденсатора в том, чтобы обеспечить магнитное поле, когда двигатель только-только запускается.

Как я уже говорил, в момент запуска возникает очень большой пусковой ток (в 3-8 раз превышающий номинальный рабочий ток), поэтому для создания кругового магнитного поля требуется бóльший по ёмкости конденсатор.

Обратите внимание

В качестве пускового можно использовать и электролитический (это конденсаторы, которые используются для постоянного напряжения). И довольно часто так  и делают. В этом случае рекомендуется подключать электролитические конденсаторы через диод.

Связано это с тем, что электролитические конденсаторы дешевле. Но лучше для этой цели использовать специальные конденсаторы с пометкой «Motor starter». Так будет меньше риска повредить конденсатор, поскольку он хоть и электролитический, но серия рассчитана именно на запуск двигателей переменного тока.

Рабоче-пусковой конденсатор для электродвигателя

Как правило, один конденсатор, который используется одновременно, как рабочий и пусковой устанавливают на двигатели мощностью менее 1 кВт. Связано это с тем, что у маломощных двигателей не такой большой пусковой ток.

В этом случае расчёт производится по номинальному току. Расчёта коснёмся чуть ниже. Рабоче-пусковой конденсатор должен быть исключительно не электролитическим и с рабочим напряжением в √2 раз больше сетевого.

При расчёте такого конденсатора в формулу подставляется номинальное значение тока двигателя.

Схема подключения двигателя через конденсатор

Собственно, сама схема не очень сложная. Как в случае соединения обмоток звездой, так и в случае соединения обмоток треугольником у нас имеется только три фазных вывода, куда должны подключаться фазы «А», «В» и «С».

Поскольку у нас имеется только одна фаза, то мы подключаем ее на два любых имеющихся вывода (предположим на «А» и «В»). А конденсаторы подключаем на любой из задействованных и оставшийся свободный вывод (например на «А» и «С» или на «В» и «С»).

В зависимости от того, куда будет подключен конденсатор будет меняться направление вращения. То есть, для того, чтобы сменить направление вращения двигателя, достаточно поменять местами любые два провода на двигателе. Например, мы включали фазу на выводы «А» и «В», а конденсаторы на «А» и «С».

То есть, если мы включим конденсаторы не на «А» и «С», а на «В» и «С», направление вращения двигателя изменится на противоположное.

Теперь внимательно присмотритесь к схеме. Вы видите на ней кнопку «Разгон». А если присмотритесь еще внимательнее то увидите, что СП (пусковой конденсатор) и СР (рабочий конденсатор) по сути соединены параллельно, с тем отличием, что пусковой конденсатор мы включаем только тогда, когда нам необходимо, а именно в момент запуска. С этим разобрались, идем дальше.

Расчёт рабочего конденсатора для асинхронного двигателя — нюансы

Прежде, чем переходить к расчёту нужно немного остановиться на значениях Iн и U, которые используются в формулах. С напряжением все более или менее ясно — это напряжение, которое будет подводится к двигателю. А вот Iн — это номинальный ток. Значение номинального тока можно узнать на шильдике двигателя.

 Номинальный ток — это максимальный рабочий ток в нормальном режиме работы двигателя с максимальной нагрузкой. Другими словами, ток в двигателе зависит только от нагрузки на валу. Если вал не нагружен, то мы получим самый минимально возможный ток, который назвается током холостого хода.

Важно

Он образуется за счет компенсации таких потерь: как трение в подшипниках, потери в обмотках, диэлектрические потери и т.д. По мере увеличения нагрузки будет увеличиваться и ток в обмотках, пока не достигнет номинального. При дальнейшем увеличении нагрузки ток будет продолжать возрастать, но начнут постепенно падать обороты двигателя.

Длительная работа в таком режиме приведет к перегрузке, это вызовет усиленный нагрев и, в конечном итоге, выход двигателя из строя.  С этим тоже разобрались, теперь можно переходить к расчету конденсатора.

Рабочий конденсатор формула расчёта

Расчёт рабочего конденсатора производится по формулам для «звезды» и для «треугольника». Отличие этих формул только в коэффициенте.

Формула расчета рабочего конденсатора для «треугольника»

Формула расчета рабочего конденсатора для «звезды»

Как видите, формулы просты, но как я уже говорил, сложность заключается в правильном подборе значения Iн. Самый простой способ заключается в замере тока двигателя (сделать это можно токоизмерительными клещами) и подстановки его в формулу. Для этого надо запустить двигатель, отключить полностью конденсаторы, замерить ток, а затем подобрать нужную ёмкость конденсаторов.

Но все эти методы подходят только в том случае, если нагрузка на валу постоянная (например, вентилятор). И здесь возникает вопрос, обязательно ли значение конденсатора должно быть «пуля в пулю». Нет, не обязательно. Достаточно 15% попадания в обе стороны. То есть, если в расчёте у нас получится ёмкость 10 мкФ, то вполне допустимыми будут значения от 8,5 до 11,5 мкФ.

Расчёт пускового конденсатора

В сети встречается много разных рекомендаций на этот счёт. Но суть сводится к тому, что пускового конденсатора должно хватить для запуска двигателя. Самый простой вариант, взять двукратное значение номинального тока двигателя и подставить в формулу для расчёта. Мы знаем, что пусковой ток двигателя в 3-8 раз превышает номинальный.

Рабочий и пусковой конденсатор включаются параллельно. При параллельном соединении конденсаторов их ёмкость суммируется, следовательно, взяв двукратное значение по номинальному току для пускового конденсатора и добавив рабочие мы получим ёмкость в два с небольшим — три раза больше требующейся ёмкости для работы. Если двигатель не запустится, ничего страшного.

Просто надо будет ещё увеличить ёмкость пусковых конденсаторов.

Расчёт конденсатора онлайн для трёхфазного двигателя

Для удобства расчётов предлагаю вам воспользоваться онлайн-калькуляторами

Другие методы расчёта конденсатора для трехфазного двигателя

Расчёт конденсатора по мощности двигателя

Это довольно грубый расчёт и заключается он в том, что ёмкость подбирается по мощности. Существуют различные формулы, но все они сводятся к тому, что нужно брать 6-7 мкФ на 100 ватт мощности или 60-70 мкФ на 1 кВт.

Насколько верны эти расчёты? Простой реальный пример. Двигатель 1,1 кВт имеет номинальный ток около 4,8 ампера при соединении обмоток треугольником.

Следовательно, конденсатор для номинального режима будет 105 мкФ (не 60 и не 70).

Расчёт конденсатора через напряжение

Вспоминаем закон Ома, делаем небольшие умозаключения и понимаем, что полученный ток посредством электромагнитной индукции и магнитных потоков будет создавать напряжение. Обмотки сдвинуты на угол 120°.

Дальше углубляться в теорию не будем, но из сказанного можно понять, что сдвигая конденсатором ток мы получаем как бы трехфазное напряжение. Следовательно, если токи в обмотках будут равны, то и напряжения тоже будут равны.

Исходя из этого понимания можно подобрать точное значение конденсатора имея под рукой только вольтметр. Этот метод подбора ёмкости конденсатора можно назвать самым точным. Внимание на экран:

При использовании данного метода лучше всего использовать два вольтметра, так вы сразу будете видеть результат, так сказать, в онлайн режиме.

Вся задача сводится к тому, чтобы подключая или отключая дополнительные конденсаторы привести значения первого и второго вольтметра к одному напряжению.

Помните, что вы будете работать с опасным напряжением, поэтому перед работой прочитайте технику безопасности.

Частные случаи

Наверное, вы уже поняли принцип подбора конденсатора. Поэтому сделаю небольшой лайф-хак, как это сейчас принято называть. Предположим, у вас есть циркулярка, на которой вы пилите и доски и бревна. Соответственно, нагрузка на двигатель будет разной.

В этом случае я вам рекомендую поставить два рабочих конденсатора одинаковой ёмкости. Допустим, вы посчитали по номинальному току и получили ёмкость 10 мкФ. Значит ставите два конденсатора по 5 мкФ.

Совет

Один включен постоянно и на нём вы будете распиливать доски, которые не очень сильно загружают двигатель, а когда вы будете распиливать брёвна, то будете подключать второй рабочий конденсатор.

С чем связана такая сложность? Если вы не создадите круговое магнитное поле, то как минимум вы потеряете мощность, как максимум это будет вызывать повышенный нагрев двигателя и его чаще придется отключать. В нормальном же режиме достаточно естественного охлаждения двигателя собственным вентилятором в виде крыльчатки, расположенной с противоположной стороны вала.

Подведём итоги

После рассмотрения данной темы можно сделать следующие выводы. Конденсаторный метод включения используется в том случае, если у вас имеется трёхфазный асинхронный двигатель и только одна фаза.

Кстати, при использовании линейного напряжения 380 вольт (когда есть две фазы, а не три) можно включать двигатель как на напряжение 220 вольт (тогда используется фаза и ноль), так и на 380 вольт, тогда используются обе фазы. Меняется лишь ёмкость пусковых и рабочих конденсаторов и не забывайте про схему соединения обмоток на соответствующее напряжение.

Ну и при напряжении 380 вольт будут меньшие пусковые и рабочие токи. Электрическая мощность двигателя при этом останется прежней. Но меняется механическая мощность. Правда механическая мощность зависит не от напряжения или конденсаторов, а в первую очередь от схемы соединения обмоток.

В статье я говорил про то, что соединение обмоток «звездой» более подвержено эффекту снижения оборотов при увеличении нагрузки. Поэтому, если вам нужно получить максимальную механическую мощность, необходимо использовать схему соединения обмоток «треугольником» или  синхронные двигатели.

На этом откланиваюсь.

С наилучшими пожеланиями, Я!

Источник: http://potomstvennyjmaster.100ms.ru/rubrik-site/sovetyi/kondensator-dlya-3f-dvigatelya.html

Конденсатор для трехфазного двигателя

Конденсатор для трехфазного двигателя является ключевой комплектующей частью. Для работоспособности двигателя в однофазной сети необходимо правильно подобрать его тип с определенной емкостью.

В независимости от того, какой тип соединения используется, необходимо подобрать конденсатор для трехфазного двигателя, емкость которого будет соответствовать требованиям. Для этого можно произвести расчет при помощи формул. Таким образом, для соединения «звездой», при вычислении нужно применить следующую формулу:

В случае, если используется тип соединения «треугольником», нужно воспользоваться иной формулой:

Обратите внимание

Параметр силы тока необходимо вычислить формулой:
Чтобы узнать КПД, а также коэф. мощности, необходимо заглянуть в паспорт или же взять эти параметры с таблички, размещенной на двигателе. Как правило, эти значения колеблются в интервале от 0,8 до 0,9.

При применении типа соединения «треугольник» можно использовать упрощенную формулу: Ср=70*Р. Согласно этой формуле можно уверенно говорить о том, что, если Р = 200 кВт, емкость конденсатора должна быть в районе четырнадцати мкФ.

Читайте также:  Счетчики учета электроэнергии - советы электрика

Узнать верно ли подобрана емкость конденсатора можно только при непосредственном запуске двигателя. В случае, если емкость больше, чем требуется, двигатель будет подвержен перегреву. В случае заниженного количественного показателя, двигатель не сможет функционировать на пределе возможностей, которые прописаны в паспорте.

Очень часто специалисты припаивают конденсатор с меньшей емкостью и, если двигатель не будет работать в нормальном рабочем режиме, его нужно менять на конденсатор с чуть большей емкостью.

Но если есть возможность провести замеры силы тока в используемой электросети и на выходе к конденсатору, лучше этой возможностью воспользоваться, потому, что это считается наиболее оптимальным вариантом для расчета количественного показателя емкости.

Для расчета пусковой емкости, в первую очередь учитываются требования, которые необходимы для пускового момента.

Если пуск производится без нагрузок, то конденсатор не нужен совсем, а это позволит упростить схему и сэкономить финансы.

Нагрузки можно уменьшить искусственно, например, сделать возможным изменение положения двигателя, чтобы уменьшить ременную передачу или установить для нее прижимной ролик.

Важно

Если же пуск осуществляется с нагрузкой, потребуется дополнительная пусковая емкость на момент старта работы. При увеличении емкости, пусковой момент поступательно растет и в определенный отрезок времени он достигает своего максимального значения, но после этого, если емкость будет продолжать увеличиваться, это приведет к абсолютно обратному результату и пусковой момент будет падать.

В случае старта работы двигателя с нагрузкой, которая эквивалентна номинальной, пусковая емкостная характеристика должна быть в два или в три раза больше, чем рабочая.

Но, при небольшой стартовой нагрузке, конденсатор может иметь низкий показатель емкости или же, как уже было ранее сказано, он может и вовсе не устанавливаться.

Учитывая то, пусковой конденсатор работает лишь в момент включения несколько мгновений, для установки можно выбрать недорогие, из серии электролитических, которые созданы специально для этих потребностей.

Оптимальным вариантом будет применение не одного конденсатора, а группы более слабых, соединенных параллельно. Это позволит наиболее точно подобрать емкостную характеристику, припаивая или отбрасывая по одному, ведь общая емкость будет суммироваться. Допустимое напряжение конденсаторов должно равняться подаваемому напряжению (U) на двигатель, умноженное на полтора (1,5U).

Источник: https://uelektrika.ru/sovety-elektrika/kondensator-dlya-trekhfaznogo-dvigate/

Как выбрать конденсатор для электродвигателя

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой.

Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения.

Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт.

Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше.

Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения.

Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Совет

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Источник: https://www.szemo.ru/press-tsentr/article/kak-vybrat-kondensator-dlya-elektrodvigatelya-/

Расчет конденсаторов для работы трехфазного асинхронного двигателя в однофазном режиме

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

п = р + о,

где р — рабочая емкость,
о — отключаемая емкость.

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

для схемы на рис. а: р = 2800 ном / ;
для схемы на рис. б: р = 4800 ном / ;
для схемы на рис. в: р = 1600 ном / ;
для схемы на рис. г: р = 2740 ном / ,

где р — рабочая емкость при номинальной нагрузке, мкФ;
ном — номинальный ток фазы двигателя, А;
— напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость п = (2,5 ÷ 3) р.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

Обратите внимание

для схемы на рис. а, б: к = 1,15 ;
для схемы на рис. в: к = 2,2 ;
для схемы на рис. г: к = 1,3 ,

где к и — напряжения на конденсаторе и в сети.

Купить конденсаторы для запуска двигателя:
CBB60 3/4/5/6/10/12/14/16 мкФ 500 В;
CBB60 20 мкФ 450 В;
CBB60 25 мкФ 450 В;
CBB60 35 мкФ 450 В;
CBB60 50 мкФ 450 В;
CBB60 60 мкФ 450 В;
CBB60 80 мкФ 450 В;
CD60 100 мкФ 450 В;
CBB60 120 мкФ 450 В.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

Решение

1. Рабочая емкость р = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме к = 1,15 x = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

Помощь студентам

Источник: http://electrichelp.ru/raschet-kondensatorov-dlya-raboty-trexfaznogo-asinxronnogo-dvigatelya-v-odnofaznom-rezhime/

Конденсаторы для запуска электродвигателя – как подобрать и рассчитать

Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями.

Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы.

Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.

Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.

Электролит используют в том случае, если нужно восстановить слой оксидной пленки. Для правильной работы аппарата нужно чтоб система была подключена к сети с переменным током в 220 В и имела четко выраженную полярность.

То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто.

Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.

Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе.

Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток – его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.

Всего существует 3 основных вида конденсаторов:

  • Электролитические;
  • Неполярные;
  • Полярные.

Описание разновидностей конденсаторов и расчет удельной емкости

  • Схема подключения пусковых конденсаторовДля электродвигателей с низкой частотой идеальным вариантом будет электролитический конденсатор, он обладает максимальной возможной емкостью, может достигать значения в 100000 мкФ. При этом напряжение может колебаться от стандартных 220 В до 600 В. Электродвигатели, в этом случае, могут использоваться в тандеме с фильтром источника энергии. Но при этом при подключении необходимо строго соблюдать полярность. Оксидная пленка, являющаяся очень тонкой, выступает в роли электродов. Зачастую электрики их называют оксидными.
  • Полярные лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко.
  • Неполярные являются хорошим вариантом, но их стоимость и габариты значительно выше электролитических.
Читайте также:  Самоучитель по электрике - советы электрика

Подбирая лучший вариант нужно учитывать несколько факторов. Если подключение происходит через однофазную сеть с напряжением в 220 В, то для пуска нужно использовать фазосдвигающий механизм.

Притом их должно быть два, не только для самого конденсатора, но и для двигателя.

Формулы, по которым вычисляется удельная емкость конденсатора, зависит от типа подключения к системе, их всего два: треугольник и звезда.

I1 – номинальный ток фазы двигателя, А (Амперы, чаще всего указывается на упаковке двигателя);

Uсети – напряжение в сети (самые стандартные варианты 220 и 380 В). Есть и большее напряжение, но для них нужны совершенно другие типы соединения и более мощные двигатели.

где Сп – Пусковая емкость, Ср – рабочая емкость, Со – отключаемая емкость.

Чтоб не напрягаться с расчетами умные люди вывели средние, оптимальные значения, зная оптимальную мощность электродвигателей, которая обозначается – М. Важным правилом является то, что пусковая емкость должна быть больше рабочей.

При мощности От 0,4 до 0,8 кВт: рабочая емкость – 40 мкФ, пусковая мощность – 80 мкФ, От 0,8 до 1,1 кВт: 80 мкФ и 160, мкФ, соответственно. От 1,1 до 1,5 кВт: Ср – 100 мкФ, Сп – 200 мкФ. От 1,5- 2,2 кВт: Ср – 150 мкФ, Сп 250 мкФ; При 2,2 кВт рабочая мощность должна быть не меньше 230 мкФ, а пусковая – 300 мкФ.

При подключении двигателя, рассчитанного на работу при 380 В, в сеть переменного тока с напряжением 220 В, происходит потеря половины номинальной мощности, хотя это никак не влияет, но скорость вращения ротора. При расчете мощности это является важным фактором, уменьшить эти потери можно при схеме подключения «треугольник», КПД двигателя в этом случае будет равно 70%.

Полярные конденсаторы лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко

Схема подключения «Треугольник»

Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.

Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор.

Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента.

Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.

Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

Схема подключения “Треугольник” и “Звезда”

Схема подключения «Звезда»

А вот если двигатель имеет 6 выходов – клемм для подключения, то его нужно раскрутить и посмотреть какие клеммы между собой взаимосвязаны. После этого она пере подключается все в тот же треугольник.

Для этого меняются перемычки, допустим на двигателе имеется 2 ряда клемм по 3 штуки, их номеруют слева направо (123,456), с помощью проводов последовательно соединяются 1 с 4, 2 с 5, 3 с 6, нужно в первую очередь найти нормативные документы и посмотреть на каком именно реле происходит пуск и окончание обмотки.

В этом случае условные 456 станут: нулем, рабочей и фазой – соответственно. К ним подключается конденсатор, как и в предыдущей схеме.

Когда конденсаторы подключены остается только опробовать собранную схему, главное не запутаться в последовательности соединения проводов.

Блиц-советы

  1. При подключении к сети в 660 В некоторые используют метод комбинированного запускаСамой важное при «звездном» подключении определить путь обмотки, потому что если не угадали хоть одну пару обмоток и, допустим начало-конец, начало-конец, конец-начало, то работа будет плохой и это будет сразу же видно, есть также возможность спалить двигатель в этом случае.
  2. Не во всех двигателях есть маркировка клемм, чаще всего помечена «масса», остальные нужно «прозванивать» с помощью мультиметра, либо же читать инструкцию, зачастую производители указывают данную информацию там.
  3. Все зависит от напряжения сети в которую будет включен двигатель; если сеть 220 В, то нужно использовать схему – треугольник, а вот для 380 В в ходу будет – звезда.
  4. При подключении к сети в 660 В некоторые используют метод комбинированного запуска. То есть запуск происходит на «треугольнике», а при достижении необходимой мощности идет переход на звезду. Но это все-таки рискованный случай, может произойти сгорание обмоток. Лучше использовать специализированные двигатели, которые работают при заданном напряжении.
  5. Для того чтоб изменить направление вращения ротора в статоре нужно подсоединить конденсатор не к нулю, а к фазе. Это также является маячком при неправильном подключении.

Источник: https://housetronic.ru/electro/kondensatory-dlya-elektrodvigatelya.html

Как подобрать конденсатор для запуска электродвигателя? :

Если имеется необходимость подключить асинхронный трехфазный электромотор в бытовую сеть, можно столкнуться с проблемой – сделать это, кажется, совершенно невозможно.

Но если знаете основы электротехники, то можно подключить конденсатор для запуска электродвигателя в однофазной сети.

Но существуют и бесконденсаторные варианты подключения, их тоже стоит рассмотреть при проектировании установки с электромотором.

Простые способы подключения электродвигателя

Проще всего будет подключить мотор при помощи частотного преобразователя. Существуют модели этих устройств, которые делают преобразование однофазного напряжения в трехфазное. Преимущество такого способа очевидно – нет потерь мощности в электродвигателе. Но вот стоимость такого частотного преобразователя довольно высокая – самый дешевый экземпляр обойдется в 5-7 тыс. рублей.

Есть еще один способ, который используется реже, – применение трехфазной обмотки асинхронника для преобразования напряжения. В этом случае вся конструкция окажется намного больше и массивнее.

Поэтому проще окажется рассчитать, какие конденсаторы нужны для запуска электродвигателя и установить их, подключив по схеме.

Главное – не потерять мощность, так как работа механизма будет происходить намного хуже.

Особенности схемы с конденсаторами

Обмотки всех трехфазных электромоторов могут соединяться по двум схемам:

  1. «Звезда» – при этом концы всех обмоток подключаются в одной точке. А начала обмоток соединяются с питающей сетью.
  2. «Треугольник» – начало обмотки соединяется с концом соседней. В итоге получается, что точки соединения двух обмоток подключаются к сети питания.

Выбор схемы зависит от того, каким напряжением питается мотор. Обычно при подключении к сети переменного тока 380 В обмотки соединяются в «звезду», а при работе под напряжением 220 В – в «треугольник».

На рисунке выше:

а) схема соединения “звезда”;

б) схема соединения “треугольник”.

Так как в однофазной сети явно не хватает одного питающего провода, нужно его сделать искусственно. Для этого применяются конденсаторы, которые сдвигают фазу на 120 градусов.

Важно

Это рабочие конденсаторы, их оказывается недостаточно при пуске электромоторов мощностью свыше 1500 Вт.

Чтобы осуществить запуск мощных двигателей, потребуется дополнительно включать еще одну емкость, которая облегчит работу во время старта.

Емкость рабочего конденсатора

Для того чтобы узнать, какие конденсаторы нужны для запуска электродвигателя при работе в сети 220 В, нужно использовать такие формулы:

  1. При подключении по схеме «звезда» С (раб) = (2800 * I1) / U (сети).
  2. При подключении в “треугольник” С (раб) = (4800 * I1) / U (сети).

Ток I1 можно измерить самостоятельно, используя клещи. Но можно использовать и такую формулу: I1 = P / (1,73 · U (сети) · cosφ · η).

Значение мощности Р, напряжения питания, коэффициента мощности cosφ, КПД η можно найти на бирке, которая приклепана на корпусе электродвигателя.

Упрощенный вариант расчета рабочего конденсатора

Если все эти формулы кажутся вам немного сложными, можно воспользоваться их упрощенной версией: С (раб) = 66 * Р (двиг).

А если упростить по максимуму расчет, то для каждых 100 Вт мощности электромотора требуется емкость около 7 мкФ. Другими словами, если у вас мотор 0,75 кВт, то вам потребуется рабочий конденсатор емкостью не менее 52,5 мкФ. После подбора обязательно произведите замер тока при работе мотора – его величина не должна превышать допустимые значения.

Пусковой конденсатор

В том случае, если на мотор воздействуют большие нагрузки либо его мощность свыше 1500 Вт, одним только сдвигом фазы не обойтись. Потребуется знать, какие необходимы еще конденсаторы для запуска электродвигателя 2,2 кВт и выше. Пусковой подключается в параллель с рабочим, но вот только он исключается из цепи при достижении оборотов холостого хода.

Обязательно пусковые конденсаторы должны отключаться – в противном случае происходит перекос фаз и перегрев электродвигателя. Пусковой конденсатор должен быть по емкости больше рабочего в 2,5-3 раза.

Если вы посчитали, что для нормальной работы мотора требуется емкость 80 мкФ, то для запуска нужно подключать еще один блок конденсаторов на 240 мкФ.

В продаже вряд ли можно встретить конденсаторы с такой емкостью, поэтому нужно производить соединение:

  1. При параллельном емкости складываются, напряжение рабочее остается таким, как указано на элементе.
  2. При последовательном соединении складываются напряжения, а общая емкость будет равна С (общ) = (С1*С2*..*СХ)/(С1+С2+..+СХ).

Желательно устанавливать пусковые конденсаторы на электромоторы, мощность которых – свыше 1 кВт. Лучше немного снизить показатель мощности, чтобы увеличить степень надежности.

Какой тип конденсаторов использовать

Теперь вы знаете, как подобрать конденсаторы для запуска электродвигателя при работе в сети переменного тока 220 В. После подсчета емкости можно приступить к выбору конкретного типа элементов.

Рекомендуется применять однотипные элементы в качестве рабочих и пусковых. Неплохо показывают себя бумажные конденсаторы, обозначения у них такие: МБГП, МПГО, МБГО, КБП.

Совет

Можно также использовать и зарубежные элементы, которые устанавливаются в блоках питания компьютеров.

На корпусе любого конденсатора обязательно указывается рабочее напряжение и емкость. Один недостаток у бумажных элементов – они имеют большие габариты, поэтому для работы мощного двигателя потребуется немаленькая батарея элементов. Применять зарубежные конденсаторы намного лучше, так как они имеют меньшие размеры и большую емкость.

Использование электролитических конденсаторов

Можно применять даже электролитические конденсаторы, но у них есть особенность – они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно – они имеют свойство взрываться.

Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.

Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400… 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.

Рабочее напряжение

Обязательно нужно учитывать один важный параметр конденсаторов – рабочее напряжение. Если использовать конденсаторы для запуска электродвигателя с очень большим запасом напряжения, это приведет к увеличению габаритов конструкции.

Но если применить элементы, рассчитанные на работу с меньшим напряжением (например, 160 В), то это приведет к быстрому выходу из строя.

Читайте также:  Номинал автоматов по току - советы электрика

Для того чтобы конденсаторы функционировали нормально, нужно, чтобы их рабочее напряжение было примерно в 1,15 раза больше, чем в сети.

Причем нужно учитывать одну особенность – если применяете бумажные конденсаторы, то при работе в цепях переменного тока их напряжение нужно уменьшать в 2 раза.

Другими словами, если на корпусе указано, что элемент рассчитан на напряжение 300 В, то эта характеристика актуальна для постоянного тока. Такой элемент можно использовать в цепи переменного тока с напряжением не более 150 В.

Поэтому лучше набирать батареи из бумажных конденсаторов, суммарное напряжение которых – около 600 В.

Подключение электромотора: практический пример

Допустим, у вас имеется электрический двигатель асинхронного типа, рассчитанный на подключение к сети переменного тока с тремя фазами. Мощность – 0,4 кВт, тип мотора – АОЛ 22-4. Основные характеристики для подключения:

  1. Мощность – 0,4 кВт.
  2. Напряжение питания – 220 В.
  3. Ток при работе от трехфазной сети составляет 1,9 А.
  4. Соединение обмоток двигателя производится по схеме «звезда».

Теперь осталось провести расчет конденсаторов для запуска электродвигателя. Мощность мотора сравнительно небольшая, поэтому, чтобы его использовать в бытовой сети, нужно подобрать только рабочий конденсатор, в пусковом надобности нет. По формуле вычисляете емкость конденсатора: С (раб) = 66*Р (двиг) = 66*0,4 = 26,4 мкФ.

Можно использовать и более сложные формулы, значение емкости будет отличаться от этого незначительно. Но если нет подходящего по емкости конденсатора, нужно произвести соединение нескольких элементов. При параллельном соединении емкости складываются.

Обратите внимание

Теперь вы в курсе, какие конденсаторы для запуска электродвигателя лучше всего использовать. Но мощность упадет примерно на 20-30 %. Если приводится в движение простой механизм, то это не почувствуется. Частота вращения ротора останется примерно такой же, какая указана в паспорте.

Учтите, что если мотор рассчитан на работу от сети 220 и 380 В, то в бытовую сеть он включается только при условии, что обмотки соединены в треугольник.

Внимательно изучите бирку, если на ней имеется только обозначение схемы «звезда», то для работы в однофазной сети придется вносить изменения в конструкцию электромотора.

Источник: https://www.syl.ru/article/348453/kak-podobrat-kondensator-dlya-zapuska-elektrodvigatelya

Как подобрать конденсаторы для электродвигателя


 Для того, чтоб подключить трёхфазный двигатель к однофазной сети, необходимо установить рабочие конденсаторы. Ёмкость этих конденсаторов , обычно подбирается из расчёта 6,6микрофарад на 100 Ватт мощности двигателя.

Недостаток данного способа в том, что мощность двигателя, при подключении в однофазную сеть, катушки которого соединены в треугольник, меньше указанной на шильдике, а соединённого в звезду, ещё меньше. А также, табличка на двигателе может быть затёрта или вовсе отсутствовать.

Как же поступить в данном случае, как подобрать нужную ёмкость? Ведь чем точнее будет ёмкость, тем большую мощность мы получим от двигателя.

Соединив концы двигателя звездой или треугольником, получаем три провода на выходе. На два из них подаём 220В, а к третьему проводу подключаем один конец конденсатора. Второй конец конденсатора соединяем с одним из проводов, идущих к сети.

 При подборе рабочего конденсатора, наиболее точный результат, на мой взгляд, можно получить подключив двигатель через амперметр и отслеживая потребляемый ток при разных ёмкостях, найти при которой показания амперметра будут минимальны. Такая ёмкость и будет оптимальна.

Обратите внимание

Амперметр можно устанавливать на любой из питающих проводов.
Ещё один способ, дающий похожий результат это измерение напряжения между контактом двигателя к которому подключен конденсатор и двумя контактами, на которые подаётся питание.

Подбираем такую ёмкость конденсатора, чтоб показания вольтметра были одинаковы и в одном и другом положении.

Для подтверждения данных выводов я произвёл эксперимент. Во время которого я отслеживал показания приборов установленных на неизвестный двигатель. Данные я заносил в таблицу.

ЗВЕЗДА

ТРЕУГОЛЬНИК

микрофарад

А

V1

сеть

V2

V3

А

V1

сеть

V2

V3

1

238

218

195

3,8

218

205

185

6

0,6

222

222

210

10

0,3

225

232

220

16

0,15

225

245

245

20

0,25

218

245

253

25

0,7

218

253

?

2,5

218

222

205

30

2,2

218

225

210

36

1,8

215

230

215

40

1,7

215

233

220

46

1,6

220

242

235

50

1,5

220

242

238

55

1,4

220

242

242

60

1,2

215

242

242

65

1,25

210

240

240

70

1,4

212

242

250

При подключении двигателя звездой  показания амперметра были минимальны при ёмкости 16микрофарад. И показания вольтметров были одинаковы (V2 и V3). А при подключении треугольником оптимальной оказалась ёмкость 60микрофарад.

ВНИМАНИЕ!!!

Подбирать ёмкость лучше не на холостом ходу двигателя, а при нагрузке на валу, хотя бы небольшой. Нагрузка должна быть одинакова на протяжении всего подбора.

Двигатель с конденсаторами не «любит» работать вхолостую.  Необходима нагрузка на валу.

Пользователь Евгений 77 добавил комментарий на ютубе:

всё несколько проще. В любом вменяемом учебнике, с названием “Электрические машины”, в конце раздела, посвящённого теории асинхронного двигателя, рассматривается вопрос работы асинхронника в однофазном режиме, с различными схемами подключения обмоток. Там же приводятся формулы расчёта ёмкости рабочих и пусковых конденсаторов. Точный расчёт, довольно сложен – нужно знать специфические параметры двигателя. Упрощённая методика расчёта имеет следующий вид: Звезда Сраб = 2800 • (Iном / Uсет); Спуск = Сраб • 2÷3 (при тяжёлых условиях запуска, кратность 5); Треугольник Сраб = 4800 • (Iном / Uсет); Спуск = Сраб • 2÷3 (при тяжёлых условиях запуска, кратность 5); где, Сраб –  ёмкость рабочего конденсатора, мкФ; Спуск –  ёмкость пускового конденсатора, мкФ; Iном – номинальный фазный ток двигателя при номинальной нагрузке, А; Uсет – напряжение сети, к которой будет подключён двигатель, В. Пример расчета. Исходные данные: имеем асинхронный электродвигатель – 4 кВт; схема соединения обмоток –Δ / Y напряжение U – 220 / 380 В; ток I – 8 / 13,9 А. По токам мотора: 8 А – это фазный ток (т.е. ток каждой из трёх обмоток) двигателя на треугольнике и звезде, и он же линейный ток на звезде; 13,9 А – это линейный ток двигателя на треугольнике (в расчётах нам не понадобится). Ну, и, собственно, сам расчёт: Звезда Сраб = 2800 • (Iном / Uсет) = 2800 • (8 / 220) = 101,8 мкФ Спуск = Сраб • 2÷3 = 101,8 • 2÷3 = 203,6÷305,4 мкФ  (при тяжёлых условиях запуска – 509 мкФ) Треугольник Сраб = 4800 • (Iном / Uсет) = 4800 • (8 / 220) = 174,5 мкФ Спуск = Сраб • 2÷3 = 174,5 • 2÷3 = 349÷523,5 мкФ  (при тяжёлых условиях запуска – 872,5 мкФ) Тип рабочего конденсатора – полипропиленовый (импортный СВВ-60 или отечественный аналог – ДПС). Напряжение кондёра не меньше 400 В по переменке (пример маркировки: АС ~ 450 В), для советских бумажных МБГО рабочая напруга должна быть не меньше 500 В, если меньше – соединять последовательно, но это потеря ёмкости, естественно – так много кондёров набирать придётся). Для пусковых конденсаторов лучше, конечно, тоже использовать полипропиленовые или бумажные, но это будет дорого и громоздко. Для удешевления, можно взять полярные электролитические (это те, у которых на корпусе есть « + » и/или « – »), предварительно сделав из двух полярных электролитов, один неполярный, соединив два конденсатора минусами вместе (можно соединять и плюсами, но у некоторых конденсаторов минус соединён с корпусом этих кондёров и если соединять их плюсами, то придётся эти кондёры изолировать не только от окружающего “железа”, но и друг от друга, а иначе КЗ), а оставшиеся два плюса оставить для подключения к обмоткам мотора (не забываем, что при последовательном соединении двух одинаковых конденсаторов их суммарная ёмкость уменьшается в два раза, а рабочее напряжение в два раза увеличивается – например, соединив последовательно (минус к минусу) два конденсатора 400 В 470 мкФ, получим один неполярный кондёр с рабочим напряжением 800 В и ёмкостью 235 мкФ). Рабочее напряжение каждого из двух последовательно соединённых электролитов, должно быть не меньше 400 В. Нужную пусковую ёмкость набираем (при необходимости) параллельным соединением таких сдвоенных (т.е. уже неполярных) электролитов – при параллельном соединении конденсаторов, рабочее напряжение остаётся неизменным, а ёмкости суммируются (так же, как и при параллельном соединении аккумуляторов). Можно и не изобретать этот “колхоз” со сдвоенными электролитами – есть готовые пусковые неполярные электролиты – например, тип CD-60. Но, в любом случае, с электролитами (и неполярными, и уж тем более с полярными) есть одно НО – такие конденсаторы в сеть 220 В можно включать (полярные лучше вообще не включать) только на время запуска двигателя – использовать электролиты как рабочие конденсаторы нельзя – взорвутся (полярные почти сразу, неполярные чуть позже). С рабочим конденсатором на треугольнике двигатель теряет 25-30 % свой трёхфазной мощности, на звезде 45-50 %. Без рабочего  конденсатора, в зависимости от схемы соединения обмоток,  потеря мощности составит более 60 %. И ещё один момент по кондёрам: в youtube немало видео, где народ подбирает рабочие конденсаторы по звуку мотора на холостом ходу (без нагрузки) и пугаясь повышенного гудения двигателя, уменьшает ёмкость рабочих конденсаторов до тех пор, пока это гул не снизится до более-менее приемлемого. Это неправильный подбор рабочего кондёра – так занижается мощность двигателя под нагрузкой. Да, повышенное гудение мотора это не очень хорошо, но не слишком опасно для обмоток, если ёмкость рабочего конденсатора не завышена. Дело в том, что в идеале, ёмкость рабочего конденсатора должна плавно меняться, в зависимости от нагрузки двигателя – чем больше нагрузка, тем больше должна быть ёмкость. Но сделать такую плавную регулировку ёмкости довольно сложно, это и дорого, и громоздко. Поэтому подбирают такую ёмкость, которая будет соответствовать какой-то конкретной нагрузке мотора – как правило, номинальной. При соответствии ёмкости рабочего конденсатора расчётной нагрузке двигателя, магнитное поле статора круговое и гудение минимально. Но когда ёмкость рабочего конденсатора превышает нагрузку мотора, магнитное поле статора становится эллиптическим, пульсирующим, неравномерным, и вот это пульсирующее магнитное поле и вызывает гудение, из-за неравномерного вращения ротора – ротор, вращаясь в одном направлении, попутно дёргается то вперёд, то назад, и при повышенных токах в обмотках, двигатель развивает меньшую мощность. Поэтому если мотор гудит на средних нагрузках и на холостом ходу, то это не так страшно, а вот если гудение наблюдается при полной нагрузке, то это говорит о явно завышенной ёмкости рабочего кондёра. В этом случае, уменьшение ёмкости позволит снизить токи в обмотках двигателя и его нагрев, выровнять (“скруглить”) магнитное поле статора (т.е. уменьшить гудение) и повысить развиваемую мотором мощность. Но оставлять мотор в работе на холостом ходу длительное время с рабочим кондёром, рассчитанным на полную мощность двигателя, всё же не стоит – в этом случае на рабочем конденсаторе будет повышенное напряжение (до 350 В), а по обмотке, подключенной последовательно с рабочим конденсатором, будет протекать повышенный ток (на 30 % больше номинального – на треугольнике, и на 15 % – на звезде). При увеличении нагрузки на мотор, напряжение на рабочем кондёре и ток в последовательно соединённой с рабочим кондёром обмотке двигателя будут снижаться.

Если на двигателе нет шильды, его параметры можно определить по установочно-присоединительным и габаритным размерам. Единственно, у не специалистов могут возникнуть сложности с определением типа (марки) двигателя. В большинстве случаев попадаются два типа: серия 4А (как в данном видео) и серия АО2.

Зная серию и сняв размеры мотора, по справочникам (их можно скачать в интернете) несложно определить его мощность и обороты, Например, определили, что движок серии 4А. Снимаем основные размеры: высота оси вращения ротора, длина и ширина по крепёжным отверстиям в лапах, диаметр вала и масса.

Открываем справочник, находим там раздел “Установочно-присоединительные и габаритные размеры” – находим по ним наш мотор. Всё просто.

Источник: http://shenrok.blogspot.com/p/blog-page_19.html

Ссылка на основную публикацию
Adblock
detector