Подключение контактора схема – советы электрика

Схема подключения пускателя

Электромагнитный пускатель по своей сути является специализированным реле и предназначен для управления работой трехфазного асинхронного двигателя (пуск, остановка, защита от перегрузок).

Помимо основных управляющих контактов пускатель может иметь вспомогательные коммутационные цепи, используемые для обеспечения дополнительных блокировок и защитных функций.

Основными характеристиками пускателя являются:

  • максимально допустимые коммутируемые ток, напряжение,
  • максимально допустимый ток дополнительных контактов,
  • рабочее напряжение, потребляемая мощность управляющей катушки,
  • количество циклов включения – выключения (эта величина определяет его износостойкость).

Пускатели могут осуществлять реверсивное и нереверсивное включение электродвигателей, иметь различное исполнение в зависимости от климатических и иных условий эксплуатации.

Соответственно могут различаться схемы подключений, однако, усвоив принцип действия пускателя, логику его работы Вы сможете легко произвести подключение, вне зависимости от особенностей конструкции.

Предлагаю Вашему вниманию некоторые типовые схемы подключения где:

  • М – электродвигатель,
  • L1, L2, L3, N – соответственно фазы и нулевой провод напряжения питания,
  • КМ – пускатель,
  • SB – кнопки управления,
  • F – автомат защиты цепи питания двигателя (в состав пускателя не входит, устанавливается отдельно),
  • FU – предохранитель цепи питания катушки пускателя.
  • KK – тепловое реле защиты.

Схема нереверсивного подключения с напряжением питания катушки 380В

Принцип работы данного подключения следующий:

  1. нажатие кнопки “пуск” замыкает цепь питания управляющей катушки КМ, пускатель срабатывает, замыкаются контакты КМ1 (цепь питания двигателя), КМ2 (блокировка кнопки “пуск”)
  2. при отпускании пусковой кнопки питание на катушку продолжает поступать через контакты КМ2, устройство остается во включенном состоянии,
  3. при нажатии SB “стоп” ток через катушку КМ прерывается, все контакты пускателя размыкаются, устройство переходит в состояние “выключено”,
  4. срабатывание термореле приводит к результату, описанному в предыдущем пункте,
  5. следующее включение возможно только после повторения действий, описанных в п.1,

Схема подключения пускателя с катушкой 220В

Схема аналогична предыдущей с той разницей, что задействуется нулевой провод. Дело в том, что в цепи трехфазного тока напряжение между фазами составляет 380В, а между любой фазой и “нулем” – 220В.

Схема реверсивного подключения.

Данное подключение достигается использованием двух пускателей КМ1 и КМ2. Принцип работы аналогичен схеме, приведенной на рисунке 1, поэтому поясню назначение дополнительных соединений:

  • реверс (обратное вращение) двигателя достигается изменением последовательности подключения фаз. Пускатель КМ1 обеспечивает порядок подключения L1-L2-L3, а КМ2 меняет их последовательность на L3-L2-L1,
  • одновременное включение двух пускателей приведет к межфазному замыканию, поэтому в схему введены контакты КМ1.3, которые при включении пускателя КМ1 размыкают цепь питания катушки КМ2 и КМ2.3 – отключающие катушку КМ1 при срабатывании КМ2.

Существуют пускатели с катушками на иные напряжения, чем 220 или 380 Вольт. В этом случае, для подключения пускателя следует использовать соответствующие преобразователи напряжения Т.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/shema_puskatel.html

Схема подключения пускателя

Это простая схема пускателя (облегченный вариант), которая лежит в базе всех либо, по крайней мере, большинства схем пуска асинхронных электродвигателей, используемых очень широко, как в индустрии, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни удивительно, но есть и такие люди).

Хоть Вы, может быть, естественно понимаете принцип её  работы, но для освежения памяти либо для новичков все же опишу кратко эту работу. И так, вся схема не считая электродвигателя, который установлен конкретно на определенном оборудовании либо устройстве, устанавливается или в щитке либо в специальной коробке (ПМЛ).

Кнопки Запуска и СТОПА, могут находится как на фронтальной стороне этого щитка, так в не его (устанавливаются на месте, где комфортно управлять работой), а может быть и там и там, зависимо от удобства. К данному щитку подводится трёхфазное напряжение от блежайшего места запитки (обычно, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

Схема пускателя облегченный вариант

Обратите внимание

А сейчас о механизме работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для пуска асинхронного электродвигателя требуется срабатывание магнитного пускателя(ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3.

Для срабатывания ПМ, нужно подать на его обмотку напряжение (кстати, величина его находится в зависимости от самой катушки, другими словами, на какое конкретно напряжение она рассчитана. Это так же находится в зависимости от условий и места работы оборудования.

Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, так как берётся с одной из имеющихся фаз и нуля).

Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на замкнутый контакт термический защиты электродвигателя ТП1, дальше проходит через катушку самого пускателя и выходит на кнопку Запуск (КН1) и на контакт самоподхвата ПМ4 (магнитного пускателя). С их питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле.

Для пуска требуется надавить кнопку «Запуск», после этого цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для запуска мотора) и контакт ПМ4, который даст возможность при отпускании кнопки запуска, продолжать работу и не отключить магнитный пускатель (именуется самоподхватом). Для остановки электродвигателя, требуется всего только надавить кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В итоге контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до последующего пуска Запуска.

Для защиты обязательно ставятся термические реле (на нашей схеме это ТП). При перегрузке электродвигателя, соответственно увеличивается ток, и движок резко начинает  греться, прямо до выхода из строя. Данная защита срабатывает конкретно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП.

Данные случаи бывают в основном при полном заклинивании механической части либо при большой механической перегрузки в оборудовании, на котором работает электродвигатель.

Хотя и не редко предпосылкой становится и сам движок, из-за высохших подшипников, нехорошей обмотки, механического повреждения и т.д.

Думаю для тех, кто этого не знал, данная статья: Схема пускателя облегченный вариант, была очень полезна и в один прекрасный момент не раз понадобится в жизни.

Подключения пускателя по схеме — реверс

Вариант приведенной выше схемы, используется для пуска электродвигателей, работающих в одном режиме, т. е. не меняя вращения (насосы, циркулярки, вентиляторы). Но для оборудования которое должно работать в 2-ух направлениях, это кран  — балки, тельферы, лебедки, открывание-закрывание ворот и др. нужна другая электрическая схема.

Для такой схемы нам понадобится не один, а два схожих пускателя и кнопка ПУСК-СТОП 3-х кнопочная, т. е. две кнопки Запуск и одна СТОП. Могут в схемах реверс, употребляться пульты и на две кнопки, это участки, где промежутки работы очень короткие.

Важно

К примеру маленькая лебедка, промежутки работы 3-10 секунд, для работы этого оборудования, вариант на две кнопки более подходящий, но кнопки обе пусковые, т. е.

только с нормально открытыми контактами, и в схеме блок контакты  (пм1 и пм2) самоподхвата не задействуются, а конкретно  пока вы держите кнопку нажатой –  оборудование работает, как отпустили – оборудование тормознуло. В остальном схема реверс подобна схеме облегченный вариант.

Подключения пускателя по схеме – реверс

Пускатель со схемой звезда – треугольник

Переключение мотора со звезды на треугольник используют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник большие трехфазные асинхронные движки от 30-50 кВт, и высокооборотные ~3000 об/мин, время от времени 1500 об/мин.

Если движок соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если движок соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт. Тут в действие вступает закон Ома «I=U/R» чем выше напряжение, тем выше ток, а сопротивление не меняется.

Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду(220).

Когда электродвигатель разгоняется и набирает полные обороты, картина стопроцентно изменяется. Дело в том что движок имеет мощность которая не находится в зависимости от того подключен он в звезду либо на треугольник. Мощность мотора зависит в основном от железа и сечения провода. Тут действует другой закон электротехники «W=I*U»

Мощность равна сила тока, умноженная на напряжение, другими словами чем выше напряжение, тем ниже ток. При подключении в треугольник(380), ток будет ниже, чем в звезду (220).

 В движке концы обмоток выведены на «клеммник»  таким образом что зависимо от того каким образом поставить перемычки получится подключение в звезду либо в треугольник.  Такая схема обычно нарисована на крышке.

Совет

 Для того чтоб создавать переключения со звезды на треугольник, мы заместо перемычек будем использовать контакты магнитных пускателей.

Схема звезда – треугольник

 Схема подключения трехфазного асинхронного мотора, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником.

К движку подходит 6 концов. Магнитный пускатель КМ служит для включения и отключения мотора. Контакты магнитного пускателя КМ1 работают как перемычки для включения асинхронного мотора в треугольник. Обратите внимания, провода от клеммника мотора должны быть включены в таком же порядке, как и в самом движке, главное не спутать.

Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель КМ он срабатывает и на него подается напряжение через  блок контакт сейчас кнопку можно отпустить. Дальше напряжение подается на реле времени РВ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени подается на магнитный пускатель КМ2 и движок запускается в «звезду».

Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается.

Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок контакт магнитного пускателя КМ2, а от туда на катушку магнитного пускателя КМ1. И электродвигатель врубается в треугольник.

Пускатель КМ2 следует также подключать через  нормально-замкнутый блок контакт пускателя КМ1, для защиты от одновременного включения пускателей.

Магнитные пускатели КМ1 и КМ2 лучше взять сдвоенные с механической блокировкой одновременного включения.

Кнопкой «СТОП» схема отключается.

Схема состоит:

— Автоматический выключатель;

— Три магнитных пускателя КМ, КМ1, КМ2;

— Кнопка запуск – стоп;

— Трансформаторы тока ТТ1, ТТ2;

— Токовое реле РТ;

— Реле времени РВ;

— БКМ, БКМ1, БКМ2– блок контакт собственного пускателя.

Источник: http://elektrica.info/shema-podklyucheniya-puskatelya/

Как подключить магнитный пускатель и тепловое реле

Июнь 21, 2014

44121 просмотров

Магнитный пускатель— это электротехнический препарат, предназначенный для дистанционного запуска, поддержания работы, остановки и защиты асинхронного электрического двигателя. Нередко пускатели применяются и для автоматического (с помощью датчиков света, таймеров и т. п.) или удаленного включения мощных линий освещения, электрообогревателей и т. п.

Для того, что бы разобраться в том, как подключить магнитный пускатель, необходимо вначале узнать как он работает и на какие характеристики стоит обратить внимание при покупке. Повторяться не буду, потому что об этом подробно рассказано в предыдущей статье.

Подключить пускатель своими руками несложно, как это сделать Мы расскажем дальше, но можно поступить проще и купить один пускатель или реверсивный сразу в сборе в металлическом, но лучше в пластиковом корпусе. В нем уже полностью собрана схема и подключены кнопки управления на крышке. Вам только остается подключить кабели электропитания сверху и отходящий кабель к нагрузке.

Подготовительные работы

Перед тем как приступить к сборке схемы подключения необходимо:

  1. Обесточить участок работы и проверить отсутствие напряжения индикаторной отверткой.
  2. Определить величину рабочего напряжения катушки, которая указывается всегда не на корпусе пускателя, а на самой катушке. Тут 2 варианта- 220 или 380 Вольт. Если 220 В, тогда на контакты катушки подается фаза и ноль. Если 380- 2 разноименные фазы. Это важно, а иначе при неправильном подключении катушка может перегореть или будет не включать силовые контакты до конца.
  3. Вам понадобится одна кнопка «Стоп» красного цвета с постоянно замкнутыми контактами и одна кнопка «Пуск» черного или зеленного цвета с постоянно разомкнутыми контактами.
  4. Запомните, что силовые контакты включают или выключают только фазы, а приходящие и отходящие нули и заземляющие проводники всегда соединяются между собой на клеммнике в обход пускателя. Они не коммутируются, для подключения катушки на 220 Вольт дополнительно с клеммника берется ноль в схему управления пускателем.

Схема подключения магнитного пускателя

Основная схема состоит из 2-ух частей:

  1. Силовых 3 пар контактов, которые подают электропитание на электрооборудование.
  2. Схемы управления, которая состоит из катушки, кнопок и дополнительных контактов, которые участвуют в поддержании работы катушки или блокируют ошибочные включения.
Читайте также:  Зануление и заземление в чем разница - советы электрика

Самая распространенная схема подключения с одним пускателем. Она самая простая с ней самостоятельно справится любой человек. Для ее сборки нам понадобится 3 жильный кабель до кнопок и одна пара нормально разомкнутых контактов в отключенном положении пускателя.

Рассмотрим схему с подключением катушки на 220 вольт, если у Вас на 380 Вольт тогда вместо синего ноля необходимо подключить другую разноименную фазу.

В нашем случае черного или красного цвета. В качестве блок контакта будет использоваться четвертая свободная пара, которая включается вместе с тремя парами силовых.

Они все расположены сверху, но могут дополнительные находится и сбоку.

На силовые контакты пускателя с автомата приходят  три фазы A, B и C. Для того, что бы при нажатии кнопки «Пуск» они включились, необходимо подать 220 Вольт напряжения на катушку, которая при этом потянет якорь и подвижные контакты сомкнуться с не подвижными. Цепь замкнется, а для того что бы ее разомкнуть понадобится отключить катушку.

Для того чтобы собрать цепь управления необходимо одну фазу, в нашем случае зеленную, подключить сразу напрямую к контакту катушки, а со второго №5- подключаем проводом к контакту №4 пусковой кнопки.

Так же со второго контакта катушки пускаем еще один провод (на схеме желтого цвета) через блок контакты на другой парный разомкнутый контакт кнопки «Пуск».

С него же делается перемычка (синего цвета) на замкнутый контакт кнопки «Стоп», на второй контакт которой подключается ноль от электропитания.

Принцип работы прост. При нажатии кнопки «Пуск» замыкаются ее контакты и на катушку подается 220 Вольт- она включает основные и дополнительные контакты. Отпускаем кнопку- размыкаем  контакты пусковой кнопки, но пускатель остается включенным, потому что ноль подается на катушку через замкнутые блок контакты.

Для отключения необходимо разорвать ноль- это делается при помощи размыкания контактов кнопки «Стоп». Обратно пускатель не включится, потому что ноль будет разорван на блок контактах. Для включения понадобится снова нажать кнопку «Пуск».

Главное отличие магнитного пускателя от рубильника или автомата: при пропадании электричества пускатель всегда отключится и для повторного включения необходимо опять нажать на кнопку «Пуск».

Для реверсивной схемы подключения асинхронного двигателя необходимо собрать схему из одной кнопки «Стоп», 2 пускателей и кнопок «Пуск». Об этом Вы узнаете из этой нашей статьи.

Как подключить тепловое реле

Между магнитным пускателем и асинхронным электродвигателем подключается последовательно тепловое реле, которое подбирается под рабочий ток каждого конкретного двигателя. Тепловое реле защищает мотор от поломки и работы в аварийном режиме, например пропадании одной из трех фаз.

Тепловое реле подключается к выходу с магнитного пускателя на электродвигатель,  ток в нем проходит последовательно через нагреватели термореле, и далее-  к электромотору.

На тепловом реле сверху есть дополнительные контакты, которые последовательно соединяются с катушкой пускателя.

Принцип работы. Нагреватели теплореле рассчитаны на определенную максимальную величину, проходящего через них тока.

В опасных ситуациях для электродвигателя, когда электрический ток в одной или нескольких фазах вырастает выше безопасных пределов- нагреватели воздействует на биметаллические контакты, которые разрывают цепь управления катушкой, тем самым отключая пускатель. Для повторного включения необходимо будет включить кнопкой биметаллические контакты.

Учитывайте, что сверху на тепловом реле есть  регулятор тока срабатывания в небольших пределах. Если его часто выбивает после установки, рекомендую увеличить регулятором значение тока.

Источник: http://jelektro.ru/vse-o-elektromontazhe/podkljuchenie-puskatelja.html

Контактор модульный. Описание, применение, параметры

В данной статье речь пойдет про модульный контактор или, как его еще часто называют магнитный пускатель или реле. При грамотном применении в схемах электрощитов модульный контактор может быть очень полезным прибором, и в том числе незаменимым при проектировании АВР.

Я в своих электрощитах, как правило, использую контактор для дистанционного (удаленного) отключения/включения потребителей.

Обратите внимание

Например, для управления НЕотключаемыми линиями в квартире или частном доме, а также для управления системами отопления совместно с контроллером GSM «Кситал» и других схожих реле, которые могут давать команду на включение или отключение контактору дистанционно при помощи связи GSM.

На производстве обычно контакторы (магнитные пускатели) используют для управления двигателями, насосами, а также в схемах дистанционного управления многими другими приборами и освещением.

Контактор модульный.

Контактор ABB представляет собой устройство, контакты которого замыкаются или размыкаются катушкой (электромагнитом). Подали напряжение на катушку (электромагнит), и контакты самого контактора в зависимости от его исполнения или замкнулись или разомкнулись.

Катушки контактора рассчитаны на напряжение, как переменного тока (АС), так и постоянного (DC), поэтому при выборе контактора обращайте внимание на этот параметр. Напряжение можно подключать от 12 до 415 В, на это тоже обязательно надо обратить внимание, т.к.

модульный контактор, рассчитанный на напряжение 12В при подаче на него 220 В просто сгорит.

Модульные контакторы ABB делятся на две серии: ESB и EN. Отличие в том, что контакторы ESB управляются только подачей или отключением напряжения и рассчитаны на токи 20, 24, 40 и 63А, а контакторы EN имеют дополнительное ручное управление (включение/отключение) и рассчитаны на токи до 40А.

У контакторов два вида контактов. Одни контакты — это силовые контакты, которые размыкают или замыкают силовые цепи, а другие — контакты управления самим контактором, т.е. непосредственно дают команду на замыкание/размыкание силовых.

Контакты управления А1-А2 обозначаются одинаково на всех контакторах. Именно к ним надо подать или снять напряжение, чтобы силовые контакты размыкались или замыкались.

Силовые контакты, которые включают или отключают нагрузку, подключенную к контактору, всегда парные 1-2, 3-4, 5-6, 7-8 и т.д.

Количество пар силовых контактов у магнитных пускателей ABB чётное, или два или четыре. Обозначаются или НО (нормально открытый) или НЗ (нормально закрытый). Т.е.

при отсутствии напряжения на катушке НО — разомкнуты, при подаче напряжения на катушку НО замыкаются, ну а НЗ соответственно наоборот. Вариации бывают разными 2НО (два открытых контакта), 3НО-1НЗ (три открытых + один закрытый) и т.д.

, и обозначаются на корпусе контактора цифрами 40 (четыре контакта НО), 20 (два контакта НО), 22 (два НО и два НЗ), 02 (два НЗ).

Например, из названия контактора ABB ESB-63-40 следует, что этот модульный контактор рассчитан на номинальный ток 63А и имеет четыре НО (нормально открытых).

Для защиты катушки управления контактора правильно ставить в её цепь автоматический выключатель, и т.к. мощность потребляемая катушкой мизерная, то номинал автомата лучше брать не более 1А.

Контактор ESB 20А занимает 1 модуль, 24А — 2 модуля, 40 и 63А — занимают по 3 модуля на дин-рейке.

Важно

К контакторам, как и к другим модульным приборам ведущих серий ABB, Легранд, Шнейдер Электрик, Хагер, можно прикреплять по бокам дополнительный контакт. Только следует учитывать, что это «не совсем полноценные» контакты, у них номинальный ток только до 6А.

Ниже привожу пример дополнительного контакта к контактору Legrand. В дополнительном контакте на самом деле имеется два контакта, один НЗ, другой НО.

Сцепить модульный контактор и дополнительный контакт несложно. Схема сцепления устройств между собой изображена на самом дополнительном контакте. Важно, чтобы отверстие в контакторе и «рычажок» дополнительного контакта точно совпали.

А так выглядят совмещенные приборы, в том числе, и уже подключенные в электрическом щитке.

Схема подключения модульного контактора.

Ниже приведена схема подключения модульного контактора. Основная суть подключения — это подать питание на катушку (контакты А1-А2), которые будут размыкать или замыкать силовые контакты НО и НЗ контактора.

Контакторы Legrand и Schneider Electric.

Контакторы Легран CX и Шнейдер Электрик iCT по назначению, бесшумности и техническим характеристикам идентичны ABB, но имеют и несколько преимуществ:

  1. Контактор модульный АВВ 40 и 63А имеет строго 4 контакта, меньше не бывает, и занимает три модуля. У Легранда и Шнейдер Электрик есть контакторы на 40 и 63А только с двумя контактами, что достаточно при однофазной электрической сети, т.к. они занимают меньше места в электрощите (два модуля), что на целый модуль меньше, чем у АВВ.
  2. Такой модульный контактор Legrand или Schneider Electric, который занимают меньше места, и стоит подешевле, чем пускатель АВВ.
    Спасибо за внимание!

Запись опубликована в рубрике Электрика с метками Автоматизация, Контакторы. Добавьте в закладки постоянную ссылку.

Источник: https://elektroschyt.ru/kontaktor/

Подключение магнитного пускателя в электрическую цепь асинхронного двигателя, схема подключения, видео

Магнитный пускатель в быту

Магнитный пускатель это коммутационное устройство для электрических цепей с большими токами. В быту, магнитные пускатели применяются в загородных домах, для дистанционного подключения уличного освещения или станков домашнего мастера, работающие от электродвигателей.

Устройство магнитного пускателя и его работа, банально просты: пружина, дроссель и двигающийся якорь. При появлении тока на дросселе, якорь замыкает контакты пускателя и на установку подается электропитание.

Прерываем ток через дроссель, якорь размыкает контакты пускателя, и питание установки отключается.

Под установкой понимаем приёмник электрической энергии, которую коммутирует магнитный пускатель (электродвигатель, уличное освещение).

Подключение магнитного пускателя — схема подключения

Есть две принципиально разные схемы подключение магнитного пускателя:

  1. простая не реверсная схема (пуск и стоп);
  2. реверсная схема подключения электродвигателя (пуск, вперед, назад).

В простой (не реверсной) схеме подключения, «участвуют» следующие элементы:

  • Пускатель магнитный;
  • Асинхронный электродвигатель с короткозамкнутым ротором;
  • Кнопки пуск и стоп;
  • Тепловое реле (необязательно, но желательно для защиты двигателя от токовых перегрузок).

Дополним эту схему, двумя рабочими схемами:

условные обозначения в схеме подключения пускателя

Где применить пускатель в быту

В частном доме, через пускатель нужно подключить все имеющиеся на территории электродвигатели, уличное освещении и мощные бытовые приборы, например, ТЭН.

Двигатели, потому что так положено, а уличное освещение, потому что пускатель обеспечит дистанционное, безопасное подключение уличного освещения из любой точки дома.

Можно поставить пускатель в щитовой комнате, а кнопки управления (включить, выключить), где удобно.

Подключение магнитного пускателя — пример

Не буду рассказывать про внутреннюю конструкцию пускателя, про дугагосительные камеры и изолирующую траверсу, это есть на видео внизу статьи. Покажу практическое подключение электродвигателя, через магнитный пускатель.

Для работы приготовим:

  • Пускатель;
  • Реле тепловое;
  • Электрический кабель. Сечения жил  рассчитываем по мощности электродвигателя;
  • Кнопочный пункт на две кнопки в одном корпусе;
  • Электродвигатель, установленный по месту.

Пускатель, кнопочный пункт, двигатель

Электромонтажные работы установки пускателя магнитного

  • От трехфазного автомата защиты (1 на желтой схеме выше), который ставим до пускателя, кабель электропитания подводим к пускателю;
  • От вывода  пускателя прокладываем кабель к кнопочному пункту;
  • От кнопки кабель прокладываем к электродвигателю.

Примечание: В этой статье ограничимся подключением асинхронного двигателя без реверсирования. То есть, только пуск и остановка.

Чтобы осуществить подключение магнитного пускателя по вышепоказанной схеме, нужно найти и понять назначение контактов на пускателе и кнопках. Поэтому, разберем, сначала кнопочный пункт, а потом посмотрим пускатель.

Источник: https://ehto.ru/elektrika-chastnogo-doma/podklyuchenie-magnitnogo-puskatelya

Схемы управления электромагнитными пускателями (контакторами)

Электромагнитные пускатели и контакторы незаменимы в цепях управления силовой нагрузкой. А чтобы правильно применять эти устройства нужно хорошо знать, как они работают и уметь чертить нужные схемы управления под свой конкретный случай.

Электромагнитные контакторы находят даже применение в цепях управления освещением.  Сегодня рассмотрим схемы управления реверсивным и нереверсивным пускателем или контактором. Я даже не знаю, как их можно различать

Для начала хочу сказать несколько слов из чего состоит пускатель. У пускателя можно выделить 3 основных элемента:

  • силовые контакты (как правило их 3) – предназначены для коммутации силовой нагрузки, номинальный ток пускателя относится именно к контактам;
  • электромагнитная катушка – предназначена для управления пускателем, в основном рассчитана на 220 или 380В;
  • дополнительный контакт – предназначен для построения схемы управления или сигнализации о состоянии пускателя (контактора), в пускателях на большие номинальные токи их может быть несколько (замыкающие, размыкающие).

Все эти 3 элемента будут участвовать в схемах управления.

1 Схема управления нереверсивным пускателем (контактором).

Данная схема встречается очень часто. К примеру, в щите устанавливаем пускатель  с тепловым реле для управления электродвигателем, а кнопки управления выводим в нужное нам место. На рисунке ниже представлена схема управления нереверсивным пускателем с катушкой управления на 380В.

Схема управления нереверсивным пускателем (контактором)

При нажатии на кнопку «Пуск» через катушку проходит электрический ток и электромагнит притягивает контакты (силовые и дополнительные). В это время контакт 97-98 замыкается и через него постоянно проходит ток для удержания электромагнита катушки.

При нажатии на кнопку «Стоп» цепь управления катушки разрывается и электромагнит отпускает контакты, которые под действие пружины возвращают их в исходное состояние. Кнопки «Пуск» и «Стоп» без фиксации. В случае перегрузки контакт КК также разрывает цепь катушки.

Читайте также:  Светодиодные лампы схема электрическая - советы электрика

До кнопочного поста достаточно проложить трехжильный кабель.

2 Схема блокировки двух устройств при помощи контакторов.

Совет

Следующая схема применима в том случае, если необходимо выполнить блокировку технологического оборудования №1 пока не включено оборудование №2. Например, зарядное устройство и приточная вентиляция. Включаем вентилятор и только после этого сможем включить зарядное устройство.

Схема блокировки двух устройств при помощи контакторов

Здесь использована предыдущая схема, к которой добавлен вспомогательный дополнительный контакт (приставка контактная, 1з). На линии питания нашего оборудования №1 (в нашем случае это зарядное устройство) устанавливаем контактор. При нажатии кнопки «Пуск» включается вентилятор, контакт 23-24 замыкается и включается контактор на линии №2.

3 Схема управления реверсивным пускателем (контактором). Механическая блокировка.

Реверсивные пускатели применяют для управления задвижками либо для выполнения реверса электродвигателя. Суть в том, что если фазу L1 и L3 (а и b) поменять местами, то двигатель начнет вращаться в противоположную сторону.

Реверсивный пускатель можно собрать из двух обычных пускателей. Главное чтобы была выполнена блокировка. Схема реализации реверсивной схемы на двух контакторах с использованием блокировочного устройства представлена ниже.

Схема управления нереверсивным пускателем (контактором). Механическая блокировка

Блокировочное устройство предназначено для исключения одновременного включения двух контакторов.

Блокировочное устройство двух контакторов

При нажатии на кнопку, к примеру у нас задвижка, «Открытие» — первый контактор включается (двигатель вращается в одну сторону).

Чтобы задвижку перевести в закрытое состояние должны нажать «Стоп», первый контактор отключится, а затем нажать кнопку «Закрытие» — второй контактор включится. Блокировочное устройство не даст нам одновременно включить два контактора.

В случае задвижки данная схема не очень верна, т.к. в схеме не показаны конечные выключатели (данную тему рассмотрю в другой раз).

4 Схема управления реверсивным пускателем (контактором). Электрическая блокировка.

Обратите внимание

Сейчас выполним те же функции только применим электрическую блокировку. Для этого к каждому контактору доставим дополнительно по приставке контактной с размыкающим контактом. Дополнительный размыкающий контакт первого контактора ставим последовательно с катушкой управления второго пускателя, аналогично и со вторым контактором.

Схема управления нереверсивным пускателем (контактором). Электрическая блокировка

При включения одного контактора, размыкающий контакт не дает включиться второму контактору.

При использовании пускателей и контакторов с катушками на 220В схемы практически не меняются. Вместо второй фазы используется N.

Итак, я рассмотрел основные схемы управления нереверсивными и реверсивными пускателями (контакторами), а теперь у вас есть уникальная возможность покритиковать мои схемы

Источник: http://220blog.ru/pro-sxemy/sxemy-upravleniya-elektromagnitnymi-puskatelyami-kontaktorami.html

Схема подключения магнитного пускателя

Прежде чем приступить к практическому подключению пускателя – напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления.

Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом.

Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя.

Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом.

Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения – «пуск» и SB1 для остановки – «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку.

Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку.

Важно

При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3.

При нажатии «стоп»  питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае – L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой.

Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В.

В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Совет

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп».

Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую.

Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп».

Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

Обратите внимание

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор – пробник электрика, который легко можно сделать самому.

Источник: http://el-shema.ru/publ/skhemy_podkljuchenija/skhema_podkljuchenija_magnitnogo_puskatelja/13-1-0-429

Схема управления освещением – виды, назначение и способы реализации

Разбираем различные варианты управления освещением

В погоне за удобством и экономичностью схемы управления освещением постоянно совершенствуются. Сейчас уже освещением, да и вообще всем электрооборудованием в доме, можно управлять находясь на другом конце Земли.

Это конечно требует серьезных капиталовложений и участия узкопрофильных специалистов. Но есть схемы управления, которые вполне возможно реализовать с минимальным набором знаний по электротехнике и которые значительно облегчат вашу жизнь и позволят сэкономить. О этих то схемах мы и поговорим в нашей статье.

Схемы с ручным управлением

Все схемы управления освещением можно разделить на ручные и автоматические. Ручные схемы хоть и не обеспечивают автоматизации, но обеспечивают должный комфорт. И во многих случаях в соотношении цена и удобство имеют несомненное преимущество перед полностью автоматическими схемами.

Проходные и перекрестные выключатели

Проходные и перекрестные выключатели на практике применяются уже достаточно давно. Но сфера их применения может быть значительно шире. Ведь установка таких переключающих устройств позволяет управлять освещением из двух, трех (см. Как сделать управление освещением с трех мест) и большего количества мест.

Итак:

  • Проходной выключатель отличается от обычного выключателя тем, что он имеет один ввод и два вывода. Пусть ввод будет контактом номер 1, а вывода контактами номер 2 и 3. В одном положении выключателя замкнуты контакты 1 и 2, а во втором положении выключателя замкнуты контакты 1 и 3.
  • Перекрестный выключатель имеет два вводных контакта 1 и 2, а также два контакта вывода 3 и 4. В одном положении выключателя у нас замкнуты контакты 1 – 3 и 2 – 4, а во втором положении замкнуты контакты 1 – 4 и 2 – 3.
  • Такая особенность позволяет выключателям управлять освещением независимо от положения других выключателей в схеме. В связи с этим такую схему часто называют коридорная.
  • Как вы можете видеть на схеме, для управления с помощью двух выключателей можно применить только проходные выключатели. Для большего количества точек управления требуется применять уже и перекрестные выключатели.
  • Для того чтоб реализовать эту схему для двух выключателей следует произвести следующие переключения. Фазный провод от распределительной коробки подключить к вводу первого выключателя.
  • После этого соединяем между собой вывода 2 и 3 обоих выключателей. А к вводу второго выключателя подключаем наш светильник. Осталось подключить нулевой провод к светильнику напрямую от распределительной коробки и наша схема готова к работе.
  • Для создания подобной схемы на три и большее количество выключателей между двумя проходными следует поставить перекрестные выключатели. В этом случае мы от выводов 2 и 3 первого проходного выключателя подключаем провода к вводам 1 и 2 перекрестного выключателя. А от выводов 3 и 4 перекрестного выключателя подключаем к выводам 2 и 3 проходного выключателя. В остальном схеме остается без изменений.
Читайте также:  Подключение лампы дрл - советы электрика

Схемы на импульсном реле

Но будем откровенны схемы проходных и перекрестных выключателей отживают свое. С появлением импульсных реле такие схемы кажутся через-чур сложными и недостаточно надежными в связи с большим количеством контактов.

Проще использовать импульсные реле, которые удобнее для управления освещением и схемы которых значительно проще.

  • Принцип работы импульсного реле сводится к следующему. При подаче питания на катушку силовые контакты изменяют свое состояние на противоположное и фиксируются в этом состоянии. Это позволяет кратковременной подачей напряжения в 0,1 – 0,5 сек., включать и отключать освещение.
  • Так как фиксация положения выключателя в этом случае не требуется, то для работы с импульсным реле применяют обычные кнопки. Такие как для дверного звонка. Простое нажатие на кнопку включает освещение. Повторное нажатие на эту или любую другую кнопку в цепи отключает его.
  • Кроме срабатывания от импульсов в большинство реле имеется функция только отключения и только включения освещения. Для некоторых схем это может стать очень полезным свойством.
  • В связи с таким богатым функционалом реле, он имеет аж шесть контактов. Обычно управляющие вывода расположены сверху, а силовые снизу. Но, к сожалению, единой системы тут нет, и каждый производитель изгаляется так, как сам считает правильным. То же самое и с обозначение контактов. Поэтому дабы не быть голословными мы возьмем принцип обозначения одного из самых распространенных производителей. В качестве примера выступает реле – РИО-1.
  • Если вы собрались подключать импульсное реле своими руками, то прежде всего собираем управляющий сигнал. Для этого фазный провод от распределительной коробки подключаем к каждому выключателю без фиксации. Вывода от выключателей собираем последовательно и подключаем к контакту «Y» на импульсном реле.
  • Но для работы реле нам необходимо наличие питание на катушке. Подводим это питание присоединением к клемме «11» фазного провода от распределительной коробки, а к клемме «N» нулевого провода.
  • Теперь от клеммы «14» берем фазный провод к нашим светильникам. Нулевой соответственно прокладываем от распределительной коробки. Все наша схема полностью работоспособна.
  • Если же у вас есть желание установить кнопку, которая будет при любом нажатии только включать освещение, то данную кнопку подключаем к контакту «Y1» импульсного реле. Соответственно кнопку, работающую только на отключение света, подключаем к контакту «Y2» реле.

Подключение освещение через пускатель

Согласно п.6.2.10 ПУЭ от одного группового автомата запрещено запитывать более 20 ламп или многоламповых светильников. Но иногда необходимо одноразово включить сразу большее число осветительных приборов.

В этом случае цепь управления освещением и схема должна предусматривать установку пускателя или контактора.

Итак:

  • Пускатель представляет собой катушку, магнитопровод и систему связанных с ним силовых и вторичных контактов. Магнитопровод разделен на неподвижную и подвижную часть. При подаче напряжения на катушку подвижная часть магнитопровода подтягивается к неподвижной. При этом изменяют свое положение и контакты. При исчезновении напряжения на катушке, магнитопровод под действием пружин отпадает, соответственно отпадает и контактная часть.
  • Для управления пускателем обычно используется кнопочный пост. На нем в обязательном порядке должно быть, как минимум две кнопки «вкл» и «откл». Кнопка «вкл» имеет нормально разомкнутые контакты, а кнопка «откл» нормально замкнутые.
  • Для того чтоб освещение управлялось через контактор или пускатель нам, как и в схеме импульсного реле, следует собрать отдельно силовую схему и отдельно схему управления. Силовая схема собирается достаточно просто. Для этого к вводным силовым контактам достаточно подключить фазные провода от групповых автоматов, а к выводам пускателя фазные провода, идущие непосредственно к светильникам.
  • А вот со схемой управления все немножко сложнее. Для этого берем фазный провод от одного их групповых автоматов и подключаем его к одному из контактов кнопки «откл». От второго контакта кнопки «откл» присоединяем провод к первому контакту кнопки «вкл». От второго контакта кнопки «вкл» пробрасываем провод к фазе катушки пускателя. Второй вывод катушки пускателя подключаем к нулю.
  • Казалось бы, вот и все. При нажатии кнопки «вкл» на катушке появится напряжение и пускатель сработает. Но дело в том, что как только мы отпустим кнопку «вкл» пускатель отпадет. Поэтому нам необходима так называемая схема самоподхвата.
  • Суть данной схемы сводится к следующему. У пускателя кроме силовых, есть вторичные контакты, которые повторяют движение силовых. Там есть нормально замкнутые и нормально разомкнутые контакты.
  • Для реализации схемы самоподхвата берем фазу с катушки пускателя. Ее подключаем на нормально разомкнутый контакт пускателя. К второму выводу этого контакта подключаем провод, который идет к кнопке «откл». Здесь подключаем его к контакту между кнопкой «вкл» и «откл». Теперь пускатель будет работать даже после отпускания кнопки «вкл».
  • Работает данная схема таким образом. Через нормально замкнутый контакт кнопки «откл» напряжение подается к кнопке «вкл». При нажатии кнопки «вкл» происходит подача напряжения на катушку и пускатель срабатывает. При этом замыкаются вторичные контакты пускателя, тем самым шунтируя кнопку «вкл». При нажатии кнопки «откл» напряжение снимается с катушки, пускатель отпадает, и схема возвращается в исходное состояние.

Схемы с автоматическим управлением

Но как бы то не было схемы ручного управления требуют участия человека. А это не всегда возможно или комфортно.

Значительно удобнее если освещение будет включаться самостоятельно по определённым факторам. Для это используется дистанционное управление освещением и схема которая предполагает наличие специальных датчиков.

Схема с датчиками освещенности

Для более рационального расходования электроэнергии применяют так называемые датчики освещённости. Они позволяют включать освещения только при снижении уровня естественного освещения до заданных параметров.

При этом они совершенно не требуют участия человека, а их обслуживание сводится к периодической протирке фотоэлемента датчика от пыли.

Принцип работы датчика освещённости сводится к фиксации уровня освещённости специальным фотоэлементом. При достижении заданных параметров он срабатывает и через силовой контакт подает напряжение к сети освещения. Регулировка необходимого уровня освещённости реализуется за счет специального регулятора на наружной поверхности корпуса.

Подключение датчика освещённости не требует особых знаний:

  • Прежде всего подключаем фазу и ноль к соответствующим выводам датчика. Они могут быть обозначены как «L» или «L1» и «N». Это подключение обеспечивает работоспособность устройства.

Схемы подключения датчика освещенности

  • От третьего, пока не задействованного вывода, подключаем светильники. Ноль для светильников берется помимо датчика, непосредственно с распределительной коробки.

Схема управления наружным освещением, для которых такие датчики используют наиболее часто, зачастую предполагает подключение от датчика не светильников, а пускателя освещения.

В этом случае, при снижении освещённости срабатывает датчик, затем пускатель и подается напряжение к сети освещения, которая управляется либо другими датчиками, либо выключателями. Это обеспечивает условие включения освещения только при недостаточной естественной освещённости.

Схема с таймером

В некоторых случаях освещение необходимо включать по факту наступления определённого времени. В этом случае схема автоматического управления освещением оснащается таймером.

Итак:

  • Таймеры бывают двух видов аналоговые, с часовым механизмом, и электронные, принцип действия которых схож с принципом действия электронных часов. Кроме того, таймеры разделяются на устройства реального времени и устройства обратного отчета.
  • Устройства реального времени ведут счет времени как обычные часы и при наступлении заданного времени выполняют заданные действия – включение или отключение электрооборудования.
  • Устройства обратного счета зачастую имеют строго регламентированный временной отрезок, в период которого возможно его срабатывания – час, сутки, неделя. В данном случае можно задать действия на не ограниченное время, а на данный временной промежуток. И таймер будет вести учёт времени до момента срабатывания.
  • Сами по себе таймеры практически не выпускаются. Зачастую они интегрированы с другими устройствами. Это могут быть автоматические выключатели, розетки, выключатели, пускатели или другое оборудование.
  • Современные таймеры имеют возможность программирования не на одно, а на несколько действий независимых друг от друга. Кроме того, современные электронные таймеры могут управлять сразу несколькими устройствами. Но такие устройства чаще всего применяются в схемах освещения «умный дом» и других высокотехнологичных схемах как на видео, создать которые без помощи профессионалов может быть затруднительно.

Схема с датчиками движения

Самую высокую степень экономии электроэнергии дает схема управления с датчиками движения. Применение данных устройств позволяет включать освещение только на время нахождения человека в комнате или зоне ответственности.

При этом от самого человека не требуется никакого участия. Даже самые совершенные схемы управления на микроконтроллере используют данный тип датчиков для управления освещением.

  • Принцип работы датчика движения основан на фиксации инфракрасного излучения, которое излучает человек. При этом дабы фиксировать не только наличие излучения, но и движение человека имеется специальная оптическая система. По мере движения человека фиксация излучения в этой системе производится разными элементами.
  • Количество элементов срабатывание которых приведет к срабатыванию датчика регулируется. Поэтому при малейшем движении для срабатывания датчика достаточно фиксация двумя элементами, а для более грубой настройки может потребоваться фиксация тремя или четырьмя элементами.
Номинальные параметры датчика движения При выборе датчика движения следует обратить внимание на целый ряд параметров. Прежде всего это электрические номинальные данные.

В первую очередь нас интересует напряжение питающей сети, которое должно быть 220В, а также номинальный ток первичной цепи.

Он может быть 6, 10 или 16А. Чем выше это значение, тем большее количество ламп мы можем запитать от датчика.

Регулировка датчика движения Большинство современных датчиков движения имеют возможность регулировки уровня освещенности для срабатывания, время работы датчика после срабатывания и выбор чувствительности срабатывания.
Радиус срабатывания датчика движения Важным параметром является угол работы датчика. Большинство современных моделей способны обеспечить угол работы до 180⁰. А для датчиков потолочной установки нормальным является охват зоны в 360⁰.
Зависимость датчика движения от погодных условий и места установки Во время настройки датчиков движения, а также их работы следует помнить, что плохие погодные условия значительно снижают их чувствительность.

Кроме того, установка посторонних предметов или стекла перед датчиком может полностью ограничить его работу. Это же правило касается и климатического оборудования, установленного рядом с датчиком.

Конструкция датчика движения Так же важным параметром является уровень защиты датчика движения от проникновения влаги и пыли. Если для установки внутри помещений можно выбрать приборы без защиты, то для наружной установки лучше выбирать изделия с IP 44 и выше.

Итак:

  • Подключение датчика движения достаточно похоже с подключением датчика освещенности. Точно так же для работы устройства ему необходимо наличие фазы и нуля. Для питания же светильников, подключенных к нему, используется третий провод. Для сети освещения он является фазным.
  • Кроме того, достаточно интересным решением является возможность их параллельного подключения. Например, у нас есть коридор с несколькими входами. Напротив каждого из них ставим датчик движения, и при срабатывании хотя бы одного из них включается освещение всего коридора. Это так называемая логика «или».
  • В виду широкого использования современные датчики движения имеют более широкие возможности чем просто фиксация движения. В большинстве случаев они содержат встроенный таймер, а иногда и датчик освещённости.
  • Это позволяет значительно расширить спектр их использования и повысить многозадачность. Например, можно задать условием срабатывания понижения уровня освещенности до определённой величины и появление движения. При этом в сработанном состоянии датчик должен находится столько-то минут, после прекращения движения в зоне его действия.
  • Конечно это более удобно, но зачастую увеличивает конечную стоимость всей схемы освещения. Поэтому наша инструкция для удешевления проекта советует интегрировать несколько разнообразных автоматических и ручных схем друг с другом.

Вывод

Как видите современная схема дистанционного управления освещением позволяет полностью исключить человека или минимизировать его участи. Но понятное дело, чем более совершенная схема, тем выше ее конечная стоимость.

Поэтому далеко не во всех случаях целесообразно расходовать большие средства на автоматизацию систем управления. Иногда можно обойтись и старым добрым выключателем. Но решать конечно вам, тем более что теперь вы знаете как это все смонтировать без посторонней помощи.

Источник: https://Elektrik-a.su/osveshhenie/obshhaya-chast/shema-upravleniya-osveshheniem-384

Ссылка на основную публикацию
Adblock
detector