Номинальная мощность электродвигателя – советы электрика

Характеристики электродвигателей: основные параметры и расшифровка маркировки современных электродвигателей

Основной составной частью любого производственного механизма является электродвигатель. Правильный подбор этого устройства обеспечивает надежность и экономичность работы всей системы в целом. Простота управления электроприводом, а также его стоимость, зависят от технических характеристик электродвигателей.

Как правило, электропривод отвечает за значение таких характеристик движения как скорость, ускорение, пусковой и тормозной момент и другие.

При оценке электродвигателя учитываются следующие параметры:

  • Мощность;
  • КПД;
  • Вращающий момент;
  • Частота;
  • Линейная скорость;
  • Угловая скорость.

Значения этих параметров влияют на особенности проектирования и архитектуры промышленного оборудования.

Рассмотрим подробнее основные характеристики двигателей.

Номинальная механическая мощность

Этот параметр электродвигателя записывается в паспортную табличку и измеряется в киловаттах. На фото характеристик электродвигателей показан внешний вид паспортной таблички (шильдика).

Например, если на шильдике указана мощность 2200 ватт, это означает, что при оптимальной скорости работы устройство в секунду производит механическую работу, равную 2200 джоулей.

Номинальная активная электрическая мощность

Следующая характеристика двигателей переменного тока рассчитывается с помощью значения КПД, которое также указано на паспортной табличке. Чем больше КПД, тем больше мощности из сети переводится в механическую мощность движения вала. Допустим, если КПД равен 80%, то номинальная активная мощность равна 2200/0.8 = 2750 Вт.

Номинальная полная электрическая мощность

Для ее нахождения используется косинус фи, который прописан на шильдике электродвигателя. Полная электрическая мощность равна отношению активной мощности и косинуса фи. При косинусе фи равном 0,87 полная мощность равна 2750/0,87=3160 Вт.

Номинальная реактивная электрическая мощность

Механические характеристики электродвигателей также важны при выборе и покупке устройства. Рассмотрим правила, по которым они рассчитываются.

Частота вращения ротора

Для вычисления этого параметра электродвигателей нам понадобится частота переменного тока и количество оборотов в минуту при оптимальной нагрузке. Пусть в паспортной табличке указаны следующие данные: частота тока составляет 50 Гц, а количество оборотов – 2800.

Переменный ток создает магнитное поле, которое имеет частоту 50*60=3000 оборотов в секунду. Известно, что электродвигатель асинхронный, а это означает, что наблюдается отставание от номинальной частоты вращения на некоторую величину. Назовем ее скольжением и обозначим за s.

Величина скольжения определяется следующей формулой: s = ((3000 — 2800) / 3000) * 100% = 6,7%.

Угловая скорость

Следующей немаловажной характеристикой асинхронного электродвигателя является угловая скорость. Для того, чтобы ее вычислить, в первую очередь нужно перевести частоту вращения ротора в другие единицы измерения. Сначала посчитаем количество оборотов в секунду: 2800 / 60 = 46,7.

Далее нужно умножить полученное число на 2 Пи: 46,7 * 2 * 3,14 = 293,276 радиан в секунду. Полученная величина характеризует угловую скорость электродвигателя. Иногда, для удобства вычислений, угловую скорость переводят в градусы. Получаем: 46,7 * 360 = 16812 градусов в секунду.

Линейная скорость

Этот механический параметр характеризует оборудование, в устройстве которого используется данный асинхронный двигатель. Допустим, что к валу двигателя присоединен диск определенного радиуса R.

В этом случае величина линейной скорости может быть определена по следующей формуле:

  • Линейная скорость = Угловая скорость * R.
  • Рассчитаем линейную скорость для нашего примера. Возьмем R = 0.3 м.
  • Линейная скорость = 293,276 * 0,3 = 87,9828 м/c.

Номинальный вращающий момент

Существует также соотношение между вращающим моментом и радиусом шкива: Момент = Сила * Радиус.

Это равенство говорит о том, что меньшем радиусе вращения сила увеличивается, и наоборот. То есть при проектировании устройства с асинхронным двигателем следует учесть тот факт, что действующая сила увеличивается с приближением к оси вала. В некоторых случаях эта особенность может сыграть важную роль.

Таким образом, для расчета всех необходимых электрических и механических характеристик электродвигателя достаточно знать данные, которые указаны на паспортной табличке или, другими словами, шильдике. Простые формулы помогут правильно настроить работу электрооборудования и оптимально использовать производственные ресурсы.

Фото основных характеристик электродвигателей

Источник: http://electrikmaster.ru/xarakteristiki-elektrodvigatelej/

Как подобрать электродвигатель по параметрам- Советы электрика

Возникают ситуации, когда выходит из строя электродвигатель, который был выпущен еще в советское время. Сразу конечно проще и дешевле будет попытаться его отремонтировать по этой инструкции для асинхронных моторов или по этой— для синхронных моделей.

Но если есть не устраняемые повреждения корпуса, фазного ротора и т. п., тогда придется покупать новый взамен старому, а это не так то просто будет сделать, как может показаться на первый взгляд.

Синхронные электромоторы стоят в бытовой технике и электроинструменте, поэтому найти и заменить Вам поможет сервисный центр производителя. А на распространенные модели, например электроинструмента Makita и Bosch- запчасти Вы без труда найдете и на рынке.

Подбор электродвигателя по параметрам на шильде

На каждом модели электродвигателя есть шильдик или металлическая пластина, на которой указывается модель мотора и все его основные технические характеристики.

Новые модели электродвигателей выпускаются с меньшими габаритами и размерами устройств соединения с приводом. Поэтому аналог старому электродвигателю подобраться не удастся.

Придется мудрить при установке электродвигателя: либо установить переходную пластину для крепления болтами мотора к станине, либо необходимо будет расточить отверстие полумуфты под размер вала и шпоночный паз.

Параметры подбора электродвигателя:

  1. Серия электродвигателя, например АО, АИР, АМУ, АОД, и т. д. Это очень важный параметр, потому что каждая серия обладает своими индивидуальными характеристиками: режим работы и запуска, с повышенным скольжением или пусковым моментом, наличие переключения скоростей, электрического тормоза и т. п. Поэтому для безотказной и эффективной работы выбирайте двигатель из такой же серии или аналогичной по характеристикам.
  2. Варианты монтажа на лапы, большой или малый фланец, с одним или двумя концами вала и т. п.
  3. Выбор по мощности. Номинальная мощность электродвигателя- Pном в кВт указывается на шильдике, только не путайте ее с мощностью передаваемой на вал. Очень важно подбирать электродвигатель точно по той мощности, которая необходима, избегая ее занижения или преувеличения.
  4. Рабочее напряжение. Мотор может быть рассчитан только на работу от одного напряжения величиной 220 В или 380 В, или на двойное- по схеме звезда-треугольник 220/380 Вольт или 380/660 В.
  5. Частота вращения вала, которая может быть максимум 3000 оборотов в минуту, 1400, 900 и т. д. Очень важный параметр, потому что частота вращения вала электродвигателя должна точно соответствовать необходимой величине для приводимых им устройств.
  6. Степень защиты от внешних воздействий, указывающая на защищенность электромотора от пыли, струй воды и т. п. Например, с IP54 можно использовать электродвигатель во влажных помещениях и на улице под дождем, но нет защиты от струй воды.
  7. Варианты климатического исполнения— для Украины, Республики Беларусь и средней полосы России, как правило применяется УХЛ — холодный климат с рабочими температурами от +40 до -60 градусов С. Есть еще У — умеренный климат (+40… -45 гр. С) , Т — тропический климат (+50… -10 гр. С) и ОМ — морской климат (+45… -40 гр. С).
  8. Второстепенные параметры, есть модели 2ух, 3х, 4х скоростные, с повышенным скольжением или пусковым моментом и т. п. Как правило, необходимы для работы на производстве.

Я не выделял отдельно параметры КПД- коэффициент полезного действия и cos ? — коэффициент мощности. При выборе они не имеют значения, потому что у современных моделей эти характеристики будут все равно лучше.

Подбор электродвигателя по параметрам, если нет шильдика

При отсутствии таблички или шильды с техническими параметрами на электродвигателе, подобрать замену гораздо сложнее.
Сразу необходимо будет узнать рабочее напряжение, мощность и частоту (количество оборотов) вращения вала, а также необходимость для электродвигателя — в увеличенном пусковом моменте, повышенном скольжении, нескольких скоростях и т. п.

Далее необходимо измерить основные размеры:

  1. Диаметр вала и его высоту (размер от его центра до «пола»).
  2. Вылет вала или длину его выступающей части.
  3. Расстояния крепежных отверстий и размер от вала до центра первого отверстия на лапе.
  4. При наличии фланца. Необходимо измерить его диаметр и расстояния по центрам крепежных отверстий.

После того как снимете все размеры и узнаете технические характеристики электродвигателя- переходите к подбору по справочнику. Электронную версию Вы найдете здесь.

вала электродвигателя 2016-03-21

Источник: http://olimp23.com/poleznye-sovety/kak-podobrat-elektrodvigatel-po-parametram-sovety-elektrika

Определение паспортных данных электродвигателя

При ремонте к сельскому электрику попадают и такие двигатели, у которых потеряна или повреждена табличка с паспортными (номинальными) данными. Их можно восстановить различными способами.

Для определения номинального напряжения трехфазных асинхронных электродвигателей собирают схему (рис. 31, а) и с помощью индукционного регулятора Т постепенно увеличивают подводимое к электродвигателю напряжение. Рекомендуется начинать измерение с напряжения 80… 100 В. Ступенчато повышая его каждый раз на одно и то же значение, например на 20 В, определяют силу тока.

Сначала она растет пропорционально увеличению напряжения, а в дальнейшем резко повышается. Отмечают значение напряжения, при котором повышается скорость возрастания силы тока, и округляют до ближайшего номинального (стандартного). Стандартные значения междуфазного (линейного) напряжения: 127, 220, 380, 500 В.

В сельскохозяйственном производстве наиболее распространено напряжение 380 В.

Обратите внимание

Синхронную частоту вращения электродвигателя легко устанавливают по тахометру, запуская его вхолостую. Номинальная частота вращения ниже синхронной на 3…5 %.

Номинальную мощность, кВт, электродвигателя можно ориентировочно определить по формуле

Рис. 31. Схема для определения паспортных данных трехфазных асинхронных электродвигателей (а) и электродвигателей постоянного тока (б)

Данные для определения номинальной мощности асинхронного электродвигателя:

Мощность (ориентировочно), кВт 0,1 1 7,5 2,5 100
k 0,11 0,06 0,04 0,03 0,02
0,7 0,77 0,85 0,88 0,9
0,7 0,75 0,82 0,85 0,88

Этот способ применим для односкоростных асинхронных электродвигателей серии 4А или А02 при напряжениях 127, 220, 380 В и частоте 50 Гц.

Чтобы более точно установить номинальную мощность электродвигателя, необходимо испытать его на нагрев (на электроремонтном предприятии).

Для определения паспортных данных машин постоянного тока, например с параллельным возбуждением (шунтовых), нужно измерить диаметр или размеры сечения провода параллельной обмотки возбуждения и найти площадь сечения провода. Ориентировочно номинальный ток обмотки возбуждения, А:

Собрав схему (рис. 31, б) и постепенно увеличивая напряжение с помощью автотрансформатора Т, снимают показания амперметра РА в цепи обмотки возбуждения ОВД испытуемой машины постоянного тока, работающей в режиме электродвигателя.

Когда сила тока возбуждения достигнет значения /в, рассчитанного по приведенной формуле, записывают показания вольтметра PV и округляют до ближайшего стандартного.

Читайте также:  Подключение диммера схема - советы электрика

Стандартные значения напряжения машин постоянного тока общего применения: 110, 220 В (иногда 440 В) – для электродвигателей; 115, 230 В (иногда 460 В) – для генераторов.

Затем подводят к зажимам испытуемой машины напряжение, равное стандартному (паспортному) значению, и измеряют тахометром частоту вращения, мин-i. Измеряют площадь одной щетки и, подсчитав их число, ориентировочно определяют номинальный ток машины, А:

Ориентировочное значение номинальной мощности машины, кВт:

Источник: http://delo-elektrika.ru/sovet-elektriku/21023.html

Номинальная мощность электродвигателя и его расчет

Одна из естественных характеристик электродвигателя – его номинальная (эффективная) мощность (Pном), которая для машин переменного и постоянного тока является механической мощностью на валу.

Это мощность двигателя, с которой он мог бы работать в номинальном режиме — режиме эффективной работы на протяжении длительного времени (не менее нескольких часов). Номинальная мощность измеряется в Вт (кВт) или лошадиных силах (л.с.) и указывается на щитке электрической машины вместе с остальными основными характеристиками.

Важно

При нагрузках, меньших Pном, мощность двигателя развивается в полной мере. При загрузке двигателя до номинальной мощности на сравнительно короткий промежуток времени, можно считать, что он не используется в полную силу. В такой ситуации бывает целесообразна его кратковременная перегрузка, предел которой определяется перегрузочной мощностью двигателя.

В паспорте электродвигателя заводом-изготовителем всегда указываются номинальные величины мощности Pном, напряжения Uном, коэффициента мощности cosϕном, номинальная угловая скорость двигателя ωном.

Расчет номинальной мощности

Метод эквивалентного тока

Применим для расчета номинальной мощности при обязательном соблюдении во время работы неизменности показателей мощности потерь в обмотках двигателя, складывающейся из постоянной и переменной величин мощности, сопротивлений обмоток ротора и статора, потерь на механическое трение. Зная номинальный коэффициент мощности, показатели эквивалентного тока и номинального напряжения, возможно рассчитать номинальную мощность электродвигателя:

Pном ≥ Iэк ∙ Uном ∙cosϕном,

где Iэк – показатель эквивалентного тока,

Uном – номинальное напряжение,

cosϕном – номинальный коэффициент мощности, повышающийся с увеличением мощности и номинальной угловой скорости вращения ротора, а также зависящий от нагрузки. Для большинства электродвигателей составляет 0,8-0,9.

Метод эквивалентного момента

Электродвигатели любого типа имеют пропорциональный произведению тока и величине магнитного потока вращающий момент.

Метод эквивалентного момента для расчета номинальной мощности используется в тех случаях, когда условия применяемой нагрузки определяют непосредственно требуемый от двигателя момент, а не ток.

Для синхронных и асинхронных машин переменного тока, коэффициент мощности cosϕ приближенно принимается за постоянную величину:

Pном = Мвр ∙ ωном,

где Мвр – значение вращающего момента,

ωном – номинальная угловая скорость двигателя.

Определение номинальной мощности опытным путем

Указанная в паспорте или щитке устройства номинальная мощность будет равна этому значению только при оптимальной нагрузке на вал, определяемой заводом-изготовителем для номинального режима. На что ориентироваться, если по каким-то причинам не сохранился паспорт или стерлись надписи на табличке?

Помогут практические измерения и счетчик электроэнергии:

  1. Необходимо полностью отключить все прочие источники потребления электроэнергии: освещение, электроприборы и т.д.
  2. В случае использования электронного счетчика, следует подключить двигатель под нагрузкой на 5-6 минут, на электронном дисплее отобразиться величина нагрузки в кВт.

Дисковый счетчик проводит измерения в кВт∙час. Следует записать последние показания и включить двигатель на 10 минут с точностью до секунды. После остановки электромашины, отнять из полученного значения записанные показания и умножить на 6. Полученное число и будет являться активной механической мощностью двигателя.

Для маломощных двигателей можно подсчитать количество оборотов диска счетчика, для каждого из которых указана, чему равна величина полных оборотов в единицах мощности. Несложные расчеты помогут определить искомую величину мощности.

При использовании этого метода важно правильно подобрать нагрузку, поскольку при ее недостаточности или перегрузке, определяемый показатель будет далек от номинальной мощности электродвигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Источник: http://podvi.ru/elektrodvigatel/chto-takoe-nominalnaya-moshhnost-elektrodvigatelya-i-kak-ona-raschityvaetsya.html

Как правильно подобрать электродвигатель по типу, мощности и другим параметрам

31 мая 2017 г., 1022

Электродвигатель — механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.

При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:

  • вид электрического тока, питающего оборудование;
  • мощность электродвигателя;
  • режим работы;
  • климатические условия и другие внешние факторы.

Типы двигателей

Электродвигатели постоянного и переменного тока

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Главный недостаток электродвигателей постоянного тока — возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные электродвигатели

Синхронные двигатели — оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

Совет

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок — до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

Мощность электродвигателя

В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

Мощность на валу электродвигателя определяется по следующей формуле:

где: Рм — потребляемая механизмом мощность;

ηп — КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Формула расчета мощности электродвигателя для насоса

где:
K3 — коэффициента запаса, он равен 1,1-1,3; g — ускорение свободного падения; Q — производительность насоса; H — высота подъема (расчетная); Y — плотность перекачиваемой насосом жидкости;

ηнас — КПД насоса;

ηп — КПД передачи.

Давление насоса рассчитывается по формуле:

Формула расчета мощности электродвигателя для компрессора

Мощность поршневого компрессора легко рассчитать по следующей формуле:

где: Q — производительность компрессора;

ηk — индикаторный КПД поршневого компрессора (0,6-0,8);

ηп — КПД передачи (0,9-0,95);
K3 — коэффициент запаса (1,05 -1,15).

Значение A можно рассчитать по формуле:

или взять из таблицы

p2, 105Па 3 4 5 6 7 8 9 10
A, 10–3 Дж/м³ 132 164 190 213 230 245 260 272

Формула расчета мощности электродвигателя для вентиляторов

где:
K3 — коэффициент запаса.
Его значения зависят от мощности двигателя:

  • до 1 кВт — коэффициент 2;
  • от 1 до 2 кВт — коэффициент 1,5;
  • 5 и более кВт — коэффициент 1,1-1,2.

Q — производительность вентилятора; H — давление на выходе;

ηв — КПД вентилятора;

ηп — КПД передачи.

Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов — 0,5-0,85.

Читайте также:  Схема установки электросчетчика - советы электрика

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

Важно! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Пусковой ток электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

Номинальный ток электродвигателей постоянного тока

Номинальный ток трехфазных электродвигателей переменного тока

где: PH — номинальная мощность электродвигателя; UH — номинальное напряжение электродвигателя, ηH — КПД электродвигателя;

cosφH — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей

где: IH — номинальное значение тока;

Обратите внимание

Кп — кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Режимы работы электродвигателей

Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями.

В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды.

При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У — модели для эксплуатации в умеренном климате;
  • ХЛ — электродвигатели, адаптированные к холодному климату;
  • ТС — исполнения для сухого тропического климата;
  • ТВ — исполнения для влажного тропического климата;
  • Т — универсальные исполнения для тропического климата;
  • О — электродвигатели для эксплуатации на суше;
  • М — двигатели для работы в морском климате (холодном и умеренном);
  • В — модели, которые могут использоваться в любых зонах на суше и на море.

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 — возможность эксплуатации на открытых площадках;
  • 2 — установка в помещениях со свободным доступом воздуха;
  • 3 — эксплуатация в закрытых цехах и помещениях;
  • 4 — использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 — исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Энергоэффективность

Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

Источник: Компания «Техпривод»

Источник: https://www.elec.ru/articles/kak-pravilno-podobrat-elektrodvigatel-po-tipu-mosh/

Расчет мощности электродвигателя

Содержание:

Преобразование электрической энергии в кинетическую осуществляется при помощи различных типов электродвигателей. Данные устройства нашли широкое применение в современном производстве и в быту.

Чаще всего электродвигатели выполняют функцию электроприводов машин и механизмов, применяются для обеспечения работы насосного оборудования, вентиляционных систем и многих других агрегатов и устройств. В связи с таким широким применением, особую актуальность приобретает расчет мощности электродвигателя.

Для этих целей разработано много различных методов, позволяющих выполнить расчеты, применительно к конкретным условиям эксплуатации.

Основные типы электродвигателей

Существует множество типов и модификаций электродвигателей. Каждый из них обладает собственной мощностью и другими параметрами.

Основная классификация разделяет эти устройства на электродвигатели постоянного и переменного тока.

Первый вариант применяется значительно реже, поскольку для его эксплуатации требуется обязательное наличие источника постоянного тока или устройства, преобразующего переменное напряжение в постоянный ток.

Выполнение данного условия в современном производстве потребует значительных дополнительных затрат.

Важно

Но, несмотря на существенные недостатки, двигатели постоянного тока имеют высокий пусковой момент и стабильно работают даже при больших перегрузках. Благодаря своим качествам, эти агрегаты нашли широкое применение на электротранспорте, в металлургической и станкостроительной отрасли.

Тем не менее, большинство современного оборудования работает с двигателями переменного тока.

В основе действия этих устройств лежит электромагнитная индукция, которую создает в магнитном поле проводящая среда.

Магнитное поле создается с помощью обмоток, обтекаемых токами, или с применением постоянных магнитов. Электродвигатели, работающие на переменном токе, могут быть синхронными и асинхронными.

Использование синхронных электродвигателей практикуется в оборудовании, где требуется постоянная скорость вращения. Это генераторы постоянного тока, насосы, компрессоры и другие аналогичные установки.

Различные модели отличаются собственными техническими характеристиками. Например, значение скорости вращения может находиться в пределах 125-1000 оборотов в минуту, а мощность достигает 10 тыс. киловатт.

Во многих конструкциях имеется короткозамкнутая обмотка, расположенная на роторе. С ее помощью, в случае необходимости, производится асинхронный пуск, после чего синхронный двигатель продолжает работу в обычном режиме, максимально сокращая потери электрической энергии. Эти двигатели отличаются небольшими размерами и высоким коэффициентом полезного действия.

Гораздо более широкое распространение в производственной сфере получили асинхронные двигатели переменного тока. Они отличаются очень высокой частотой вращения магнитного поля, значительно превышающей скорость вращения ротора.

Существенным недостатком этих устройств считается снижение КПД до 30-50% от нормы при низких нагрузках. Кроме того, во время пуска параметры тока становятся в несколько раз больше по сравнению с рабочими показателями.

Совет

Данные проблемы устраняются путем использования частотных преобразователей и устройств плавного пуска.

Асинхронные двигатели используются на тех объектах, где требуются частые включения и выключения оборудования, например, в лифтах, лебедках, и других устройствах.

Расчет мощности электродвигателя для насоса

Выбор электродвигателя для насосной установки зависит от конкретных условий, прежде всего – от схемы водоснабжения. В большинстве случаев подача воды производится с помощью водонапорного бака или водонапорного котла. Для приведения в действие всей системы используются центробежные насосы с асинхронными двигателями.

Выбор оптимальной мощности насоса осуществляется в зависимости от потребности в подаче и напоре жидкости. Подача насоса QH измеряется в литрах, подаваемых в 1 час, и обозначается как л/ч. Данный параметр определяется по следующей формуле: Qн = Qmaxч = (kч х kсут х Qср.

сут) / (24 η), где Qmaxч — возможный максимальный часовой расход воды, л/ч, kч – коэффициент неравномерности часового расхода, kсут — коэффициент неравномерности суточного расхода (1,1 – 1,3), η — КПД насосной установки, с учетом потерь воды), Qср.

сут — значение среднесуточного расхода воды (л/сут).

Оптимальный напор воды должен обеспечивать ее подачу в установленное место при условии необходимого давления. Требуемые параметры напора насоса (Ннтр) зависят от высоты всасывания (Нвс) и высоты нагнетания (Ннг), которые в сумме определяют показатели статического напора (Нс), потери в трубопроводах (Hп) и разность давлений верхнего (Рву) и нижнего (Рну) уровней.

Исходя из того, что значение напора будет равно H = P/ρg, где Р — давление (Па), ρ — плотность жидкости (кг/м3), g = 9,8 м/с2 — ускорение свободного падения, g — удельный вес жидкости (кг/м3), получается следующая формула: Ннтр = Hc + Hп + (1/ρ) х (Рву – Рну).

После вычисления расхода воды и напора по каталогу уже можно выбрать насос с наиболее подходящими параметрами.

Чтобы не ошибиться с мощностью электродвигателя, ее нужно определить по формуле: Pдв (kз х ρ х Qн х Нн) / (ηн х ηп), где kзявляется коэффициентом запаса, зависящим от мощности электродвигателя насоса и составляет 1,05 – 1,7.

Обратите внимание

Этот показатель учитывает возможные утечки воды из трубопровода из-за неплотных соединений, разрывов трубопровода и прочих факторов, поэтому электродвигатели для насосов должны иметь некоторый запас мощности. Чем больше мощность, тем меньше коэффициент запаса можно принять.

Например,при мощности электродвигателя насоса 2 кВт – kз = 1,5, 3,0 кВт – kз = 1,33, 5 кВт – kз =1,2, при мощности больше 10 кВт- kз = 1,05 – 1,1. Другие параметры означают: ηп – КПД передачи (прямая передача – 1,0, клиноременная – 0,98, зубчатая – 0,97, плоскоременная – 0,95), ηн — КПД насосов поршневых 0,7 – 0,9, центробежных 0,4 – 0,8, вихревых 0,25 – 0,5.

Расчет мощности двигателя формула для компрессора

Выбирая электродвигатель, наиболее подходящий для работы того или иного компрессора, необходимо учитывать продолжительный режим работы данного механизма и постоянную нагрузку. Расчет требующейся мощности двигателя Рдв осуществляется в соответствии с мощностью на валу основного механизма. В этом случае следует учитывать потери, возникающие в промежуточном звене механической передачи.

Читайте также:  Как найти утечку тока в доме - советы электрика

Дополнительными факторами являются мощности, назначение и характер производства, на котором будет эксплуатироваться компрессорное оборудование. Они оказывают определенное влияние, в связи с чем оборудование может потребовать незначительных, но постоянных регулировок для поддержки производительности на должном уровне.

Определить мощность двигателя можно по формуле:, в которой:

  • Q – значение производительности или подачи компрессора (м3/с);
  • А – работа по совершению сжатия (Дж/м3);
  • ηк – индикаторный КПД (0,6-0,8) для учета потерь мощности при реальном сжатии воздуха;
  • ηп – механический КПД (0,9-0,95) учитывающий передачу между двигателем и компрессором;
  • кз– коэффициент запаса (1,05-1,15) для учета факторов, не поддающихся расчетам.

Работа А рассчитывается по отдельной формуле: А = (Аи + Аа)/2, где Аи и Аа представляют собой соответственно изотермическое и адиабатическое сжатие.

Значение работы, которую необходимо совершить до появления требуемого давления, можно определить с помощью таблицы:

Р2, 105 Па 3 4 5 6 7 8 9 10
А, 10-3 Дж/м3 132 164 190 213 230 245 260 272

Типичная работа компрессора характеризуется продолжительным режимом работы. Реверсивные электроприводы, как правило, отсутствуют, включения и выключения крайне редкие. Поэтому наиболее оптимальным вариантом, обеспечивающим нормальную работу компрессоров, будет синхронный электрический двигатель.

Формула расчета для вентиляторов

Вентиляторы широко применяются в самых разных областях. Устройства общего назначения работают на чистом воздухе, при температуре ниже 800. Воздух с более высокой температурой перемещается с помощью специальных термостойких вентиляторов. Если приходится работать в агрессивной или взрывоопасной среде, в этих случаях используются модели антикоррозийных и взрывобезопасных устройств.

В соответствии с принципом действия, вентиляторные установки могут быть центробежными или радиальными и осевыми. В зависимости от конструкции, они развивают давление от 1000 до 15000 Па. Поэтому мощность, потребная для привода вентилятора, рассчитывается в соответствии с давлением, которое необходимо создать.

С этой целью используется формула: Nв=Hв·Qв/1000·кпд, в которой Nв – мощность, потребная для привода (кВт), Hв – давление, создаваемое вентилятором (Па), Qв – перемещаемый объем воздуха (м3/с), кпд – коэффициент полезного действия.

Для расчета мощности электродвигателя используется формула:, где значения параметров будут следующие:

  • Q – производительность агрегата;
  • Н – давление на выходе;
  • ηв – коэффициент полезного действия вентилятора;
  • ηп – коэффициент полезного действия передачи;
  • кз – коэффициент запаса, зависящий от мощности электродвигателя. При мощности до 1 кВт кз = 2; от 1 до 2 кВт кз = 1,5; при 5 кВт и выше кз = 1,1-1,2.

Данная формула позволяет рассчитывать мощность электродвигателей под центробежные и осевые вентиляторы. Для центробежных конструкций КПД составляет 0,4-0,7, а для осевых – 0,5-0,85. Другие расчетные характеристики имеются в специальных каталогах для всех типов электродвигателей.

Запас мощности не должен быть слишком большим. Если он будет слишком большой, КПД привода заметно снизится. Кроме того, в двигателях переменного тока может снизиться коэффициент мощности.

Расчет пускового тока электродвигателя

В момент запуска электродвигателя его вал остается в неподвижном состоянии. Для того чтобы он начал раскручиваться, необходимо приложить усилие, значительно больше номинального. В связи с этим пусковой ток также превышает номинал. В процессе раскручивания вала происходит постепенное плавное уменьшение тока.

Влияние пусковых токов негативно сказывается на работе оборудования, в основном из-за резких провалов напряжения. Для того чтобы уменьшить их отрицательное воздействие, применяются различные способы. В процессе разгона, схемы электродвигателя переключаются со звезды на треугольник, используются частотные преобразователи и электронные устройства плавного пуска.

Вначале рассчитывается значение номинального тока двигателя, в соответствии с его типом и номинальной мощностью. Для устройств постоянного тока формула будет выглядеть следующим образом:

У электродвигателей переменного тока номинальный ток определяется по другой формуле:

Все параметры имеют соответствующие обозначения:

  • РН – значение номинальной мощности двигателя;
  • UH – значение номинального напряжения двигателя;
  • ηH–КПД электродвигателя;
  • cosfH – соответствует коэффициенту мощности двигателя.

После расчетов номинального тока можно вычислить значение пускового тока по формуле:, в которой:

  • IH – номинальное значение тока, определенное ранее;
  • Кп–кратность постоянного тока к номиналу.

Значение пускового тока рассчитывается для каждого двигателя, имеющегося в электрической цепи. В соответствии с его величиной выбирается автоматический выключатель, обеспечивающий защиту всей цепи.

Режимы работы электродвигателей

Нагрузка на электродвигатель определяется режимом его работы. Она может оставаться неизменной или изменяться в зависимости от условий эксплуатации. При выборе двигателя обязательно учитывается характер и значение предполагаемой нагрузки. С учетом этого фактора выполняется расчет мощности электродвигателя.

Режимы, в которых работают электродвигатели:

  • S1 – продолжительный режим. Нагрузка не меняется в течение всего периода эксплуатации. Температура двигателя достигает установленного значения.
  • S2 – кратковременный режим. В этом случае в период работы температура не успевает достигнуть нужного значения. При отключении происходит охлаждение двигателя до температуры окружающей среды.
  • S3 – периодически-кратковременный режим. В процессе работы двигателя производятся периодические отключения. В эти периоды температура двигателя не может достигнуть нужного значения или стать такой же, как в окружающей среде. При расчетах двигателя, в том числе и мощности, учитываются все паузы и потери, их продолжительность. Одним из важных критериев выбора агрегата, считается допустимое число включений за определенный отрезок времени.
  • S4 – периодически-кратковременный режим с частыми пусками.
  • S5 – периодически-кратковременный режим с электрическим торможением. Оба режима S4 и S5 работают также, как и S3.
  • S6 – периодически-непрерывный режим с кратковременной нагрузкой. Эксплуатация двигателя осуществляется под нагрузкой, которая чередуется с холостым ходом.
  • S7 – периодически-непрерывный режим с электрическим торможением.
  • S8 – периодически-непрерывный режим, в котором одновременно изменяется нагрузка и частота вращения.
  • S9–режим, когда нагрузка и частота вращения изменяются не периодически.

Источник: https://electric-220.ru/news/raschet_moshhnosti_ehlektrodvigatelja/2016-10-18-1089

Как определить основные параметры электродвигателя? – Онлайн-журнал “Толковый электрик”

У всех электродвигателей на корпусе есть табличка, на которой указываются его электрические характеристики. Именно об основных параметрах электродвигателей мы расскажем в этой статье.

Табличка с номинальными данными электродвигателя

Параметры электродвигателя: таблица

Наименование параметра

Единица измерения

Примечание

Тип
Номинальная мощность Киловатт
Номинальный ток Ампер Для трехфазных электродвигателей зависит от типа соединения обмоток
Номинальное напряжение Вольт
Коэффициент мощности (КПД)
Коэффициент полезного действия (cos ϕ) %
Номинальная скорость вращения Обороты в минуту

Но иногда табличка отсутствует, либо прочесть ее невозможно. При эксплуатации двигатель неоднократно окрашивают, нередко – вместе с табличкой. Поэтому приходится определять его параметры методом измерений.

Параметры электродвигателя №1: мощность

В паспортных данных указывается номинальная активная мощность, потребляемая из сети при номинальной нагрузке на валу. Для производства измерений нужно нагрузить электродвигатель, испытывая его со штатной нагрузкой (в составе устройства, для привода которого он предназначен).

Для измерений можно использовать электросчетчик. Для этого нужно подключить электродвигатель в качестве единственной нагрузки на счетчик на время, засекаемое по секундомеру.

Важно

Для удобства расчетов двигатель подключается на время, равное 10 минутам. До подключения и через 10 минут со счетчика снимаются показания. Разность показаний в кВт∙ч, поделенная на 60/10=6, и будет равна мощности электродвигателя в киловаттах.

Некоторые электронные счетчики имеют функцию измерения мгновенной мощности, при этом задача упрощается. Нужно при работающем двигателе зайти в меню измерений счетчика и найти в нем искомое значение.

Параметры электродвигателя №2: потребляемый ток

Для измерения тока, потребляемого электродвигателем, используются токоизмерительные клещи, измеряющие ток в цепи без ее разрыва.

Токоизмерительные клещи

При использовании мультиметра (как пользоваться мультиметром?) или амперметра нужно заранее убедиться в том, что ожидаемое значение измеряемого параметра лежит в диапазоне измерений. Прибор подключается последовательно с электродвигателем или с одной из обмоток трех фаз. И не стоит забывать о пусковом токе, перед запуском прибор нужно надежно закоротить, чтобы он не сгорел.

Можно воспользоваться и электронным счетчиком с функцией измерения токов.

Если потребляемая мощность уже известна, ток можно подсчитать. Для однофазного двигателя:

Для трехфазного:

Величину напряжения тоже рекомендуется измерить, желательно – непосредственно на зажимах электродвигателя.

Если измерения производятся без нагрузки, то получится ток холостого хода. Подсчитать номинальный ток не представляется возможным, так как ток холостого хода не нормируется и составляет 20-40% от номинального. В этом случае для подсчета токов холостого хода трехфазных асинхронных электродвигателей используются данные таблицы.

Мощность двигателя, кВт Ток холостого хода (в процентах от номинального)
При частоте вращения, об/мин
3000 1500 1000 750 600 500
0,12-0,55 60 75 85 90 95
0,75-1,5 50 70 75 80 85 90
1,5-5,5 45 65 70 75 80 85
5,5-11 40 60 65 70 75 80
15-22,5 30 55 60 65 70 75
22,5-55 20 50 55 60 65 70
55-110 20 40 45 50 55 60

Параметры электродвигателя №3: тип соединения обмоток

Это очень важный параметр трехфазного электродвигателя. Все шесть выводов начал и концов обмоток выведены в барно двигателя. Подключить их можно либо в звезду, либо в треугольник.

Схема соединения обмоток

Рядом с символами «треугольник/звезда» на табличке указывается номинальное напряжение – «220/380 В». Это означает, что при включении в сеть трехфазного тока напряжением 380 В обмотки двигателя нужно соединить в звезду. Ошибка в соединении приведет к выходу электродвигателя из строя.

Номинальный ток также указывается через дробь. В описанном случае необходимо значение, указанное в знаменателе.

Пусковой ток электродвигателя

В момент запуска вал электродвигателя неподвижен. Чтобы его раскрутить, нужно усилие, превышающее номинальное. Поэтому и ток при пуске превышает номинальный. При раскручивании вала ток плавно уменьшается.

Пусковые токи мешают работе электрооборудования, вызывая резкие провалы напряжения. При запуске мощных агрегатов могут даже отпадать пускатели других электродвигателей, гаснуть лампы ДРЛ.

Для снижения последствий запуска применяют три способа.

  1. Переключение в процессе разгона схемы электродвигателя со звезды на треугольник.
  2. Использование электронных устройств плавного пуска.
  3. Использование частотных преобразователей.

Источник: http://electric-tolk.ru/kak-opredelit-parametry-elektrodvigatelya/

Ссылка на основную публикацию
Adblock
detector