Как работает люминесцентная лампа – советы электрика

Принцип работы люминесцентной лампы и устройство прибора

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Обратите внимание

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети.

В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды.

Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Источник: https://proprovoda.ru/osveshhenie/lampy/princip-raboty-lyuminescentnoj-lampy.html

Устройство люминесцентной лампы и принцип работы

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути.

Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия.

Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту.

Важно

При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра.

Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку.

Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Читайте также:  Самоучитель по электрике - советы электрика

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Источник: https://simplelight.info/istochniki-osveshheniya/princip-raboty-lyuminescentnoy-lampy.html

Как работает люминесцентная лампа

Люминесцентная лампа, явившаяся результатом целого ряда открытий и исследований (подробнее об этом в статье история люминесцентной лампы), сегодня стала одним из основных источников искусственного света, как в офисных помещениях, так и в частных домах и квартирах.

Ряд выгодных отличий от популярной еще пару десятков лет назад лампы накаливания, позволили люминесцентной лампе достаточно успешно конкурировать с «фаворитными» источниками света, а также привело к созданию ее боле совершенных и компактных модификаций.

Но речь в этой статье пойдет не о ее достоинствах или недостатках, а о том, как она работает.

Все виды люминесцентных ламп, будь то популярные сейчас «экономки» или старые длинные лампы дневного света, построены и работают примерно по одному и тому же принципу. Отличие может быть лишь в электронной схеме подключения к источнику питания.

Конструкция люминесцентной лампы

Лампа состоит из стеклянной колбы (может быть самой разнообразной формы и размеров), двух (иногда четырех) электродов, инертного газа, ртути (паров), люминофора и схемы запуска (в экономках она находится внутри корпуса лампы).

Электрод представляет собой два проводящих электрических контакта (обычно из проволоки), к которым подводится электрический ток и нить накала, покрытую специальным эмиссионным веществом для более эффективного испускания электронов в процессе работы и большей продолжительности  службы самой лампы.

Принцип работы люминесцентной лампы

Когда электрическая цепь лампы подает на электроды ток, они начинают постепенно разогреваться и испускать электроны. Но этих электронов недостаточно, чтобы зажечь между электродами, так называемый тлеющий разряд – поток ионизированных частиц газа.

Тогда в работу вступает та часть схемы управления, которая отвечает за запуск лампы. Кратковременный импульс напряжения зажигает инертный газ в лампе, а затем и пары ртути.

Симбиоз этих веществ, ионизированных электрическим током, приводит к возникновению свечения в невидимой для нас ультрафиолетовой области спектра.

Чтобы преобразовать ультрафиолетовый свет в видимый свет, используется люминофор, нанесенный на стенки стеклянной колбы. Получается двойное преобразование. Сначала электроны, испускаемые электродами лампы, ионизируют газ и пары ртути, а затем ионизированные частицы возбуждают люминофор, заставляя его испускать видимый для нашего глаза свет.

Разница в принципе работы обычной длинной лампы дневного света и «экономки» лишь в том, что в первом случае схема запуска состоит из дросселя (индуктивности), конденсатора и стартера. Во втором же эти функции выполняет более сложная электрическая схема, в состав которой входят другие электронные компоненты.

Сейчас производители используют различный состав люминофора, чтобы менять цвет свечения люминесцентных ламп или как еще говорят – его температуру. Более желтое (теплое) свечение имеет температуру порядка 2700 К, естественное дневное (белое) – порядка 4100 К, я яркое (холодный свет) – примерно 6000 К. Подобную маркировку можно встретить и на самих лампах.

Источник: http://scsiexplorer.com.ua/index.php/ljudi-i-tehnologii/kak-eto-rabotaet/1280-kak-rabotaet-ljuminestsentnaja-lampa.html

Схема включения люминесцентных ламп

Главная > Лампы электрические > Схема включения люминесцентных ламп

Лампы дневного света с самых первых выпусков и частично до сих пор зажигаются с помощью электромагнитной пускорегулирующей аппаратуры – ЭмПРА. Классический вариант лампы выполнен в виде герметичной стеклянной трубки со штырьками на концах.

Как выглядят люминесцентные лампы

Внутри она заполнена инертным газом с парами ртути. Ее установка производится в патроны, через которые подается напряжение на электроды.

Между ними создается электрический разряд, вызывающий ультрафиолетовое свечение, которое действует на слой люминофора, нанесенный на внутреннюю поверхность стеклянной трубки. В результате появляется яркое свечение.

Схема включения люминесцентных ламп (ЛЛ) обеспечивается двумя основными элементами: электромагнитным балластом L1 и лампой тлеющего разряда SF1.

Схема включения ЛЛ с электромагнитным дросселем и стартером

Схемы зажигания с ЭмПРА

Устройство с дросселем и стартером работает по следующему принципу:

  1. Подача напряжения на электроды. Ток через газовую среду лампы сначала не проходит из-за ее большого сопротивления. Он поступает через стартер (Ст) (рис. ниже), в котором образуется тлеющий разряд. При этом через спирали электродов (2) проходит ток и начинает их подогревать.
  2. Контакты стартера разогреваются, и один из них замыкается, так как он выполнен из биметалла. Ток проходит через них, и разряд прекращается.
  3. Контакты стартера перестают разогреваться, и после остывания биметаллический контакт снова размыкается. В дросселе (Д) возникает импульс напряжения за счет самоиндукции, которого достаточно для зажигания ЛЛ.
  4. Через газовую среду лампы проходит ток, после запуска лампы он уменьшается вместе с падением напряжения на дросселе. Стартер при этом остается отключенным, так как этого тока недостаточно для его запуска.

Схема включения люминесцентной лампы

Конденсаторы (С1) и (С2) в схеме предназначены для снижения уровня помех. Емкость (С1), подключенная параллельно лампе, способствует снижению амплитуды импульса напряжения и увеличению его продолжительности. В результате увеличивается срок службы стартера и ЛЛ. Конденсатор (С2) на входе обеспечивает существенное снижение реактивной составляющей нагрузки (cos φ увеличивается с 0,6 до 0,9).

Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Для этого спирали замыкают накоротко и последовательно к стартеру подключают конденсатор. По такой схеме источник света сможет проработать еще какое-то время.

Широко распространен способ включения с одним дросселем и двумя лампами дневного света.

Включение двух ламп дневного света с общим дросселем

2 лампы подключаются последовательно между собой и дросселем. Для каждой из них необходима установка параллельно подключенного стартера. Для этого используется по одному выводному штырьку с торцов лампы.

Для ЛЛ необходимо применять специальные выключатели, чтобы у них не залипали контакты от высокого пускового тока.

Зажигание без электромагнитного балласта

Балластники для люминесцентных ламп: подключения и принципы работы

Для продления жизни сгоревших ламп дневного света можно установить одну из схем включения без дросселя и стартера. Для этого используют умножители напряжения.

Схема включения ламп дневного света без дросселя

Нити накала замыкают накоротко и подают на схему напряжение. После выпрямления оно увеличивается в 2 раза, и этого достаточно, чтобы светильник загорелся. Конденсаторы (С1), (С2) подбирают под напряжение 600 В, а (С3), (С4) – под 1000 В.

Способ подходит также для исправных ЛЛ, но они не должны работать с питанием постоянным током. Через некоторое время ртуть собирается вокруг одного из электродов, и яркость свечения падает. Чтобы ее восстановить, надо перевернуть лампу, тем самым изменив полярность.

Подключение без стартера

Применение стартера увеличивает время разогрева лампы. При этом срок его службы небольшой. Электроды можно подогревать без него, если установить для этого вторичные трансформаторные обмотки.

Схема подключения люминесцентной лампы без стартера

Там, где не используется стартер, на лампе есть обозначение быстрого старта – RS. Если установить такую лампу со стартерным запуском, у нее могут быстро перегореть спирали, так как для них предусмотрено большее время разогрева.

Электронный балласт

Стартер для люминесцентных ламп: применение

Электронная схема управления ЭПРА пришла на смену старым источникам дневного света для устранения присущих им недостатков. Электромагнитный балласт потребляет лишнюю энергию, часто шумит, выходит из строя и при этом портит лампу. Кроме того, светильники мерцают из-за низкой частоты напряжения питания.

ЭПРА представляет собой электронный блок, который занимает мало места. Люминесцентные светильники легко и быстро запускаются, не создавая шума и обеспечивая равномерное освещение. В схеме предусмотрено несколько способов защиты лампы, что увеличивает срок эксплуатации и делает ее работу безопасней.

ЭПРА работает следующим образом:

  1. Разогрев электродов ЛЛ. Запуск происходит быстро и мягко, что увеличивает срок службы лампы.
  2. Поджиг – генерирование импульса высокого напряжения, пробивающего газ в колбе.
  3. Горение – поддержание небольшого напряжения на электродах лампы, которого достаточно для стабильного процесса.

Схема электронного дросселя

Вначале переменное напряжение выпрямляется с помощью диодного моста и сглаживается конденсатором (С2). Следом установлен полумостовой генератор высокочастотного напряжения на двух транзисторах.

Нагрузкой служит тороидальный трансформатор с обмотками (W1), (W2), (W3), две из них включены противофазно. Они поочередно открывают транзисторные ключи.

Третья обмотка (W3) подает резонансное напряжение на ЛЛ.

Параллельно лампе подключен конденсатор (С4). Резонансное напряжение поступает на электроды и пробивает газовую среду. К этому времени нити накала уже разогрелись. После зажигания сопротивление лампы резко падает, вызывая снижение напряжения до достаточной величины, чтобы поддерживать горение. Процесс запуска продолжается менее 1 с.

Электронные схемы имеют следующие преимущества:

  • пуск с любой заданной задержкой времени;
  • не требуется установка стартера и массивного дросселя;
  • светильник не моргает и не гудит;
  • качественная светоотдача;
  • компактность устройства.

Использование ЭПРА дает возможность установить его в цоколь лампы, которую также уменьшили до размеров лампы накаливания. Это дало начало новым энергосберегающим лампам, которые можно вворачивать в обычный стандартный патрон.

В процессе эксплуатации лампы дневного света стареют, и для них требуется увеличение рабочего напряжения. В схеме ЭмПРА напряжение зажигания тлеющего разряда у стартера уменьшается.

Совет

При этом может происходить размыкание его электродов, что вызовет срабатывание стартера и отключение ЛЛ. После она снова запускается. Подобное мигание лампы приводит к ее выходу из строя вместе с дросселем.

В схеме ЭПРА подобное явление не происходит, поскольку электронный балласт автоматически подстраивается под изменение параметров лампы, подбирая для нее благоприятный режим.

Ремонт лампы. Видео

Стартер для ламп дневного света

Советы по ремонту люминесцентной лампы можно получить из этого видео.

Устройства ЛЛ и схемы их включения постоянно развиваются в направлении улучшения технических характеристик. Важно уметь выбирать подходящие модели и правильно их эксплуатировать.

Источник: https://elquanta.ru/lampa/skhema-vklyucheniya-lamp.html

Схемы подключения люминесцентных ламп дневного света

Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания. Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы. Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.

При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света. Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях. При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА.

Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель). Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.

Читайте также:  Электроразводка в квартире схема - советы электрика






Принцип работы:  при подключении электропитания в стартере появляется разряд и замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается. В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера. Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.

Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 ВольтЕта схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала.

В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него – достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного “дросселя” как правило схема на подобие етой…

Источник: http://elektt.blogspot.com/2015/12/lyuminestsentnaya-lampa.html

Принцип работы люминесцентной лампы

Содержание:

Среди газоразрядных осветительных приборов широкую известность получили люминесцентные лампы. Они изготавливаются в форме стеклянных цилиндров, на внутреннюю поверхность которых нанесен слой люминофора.

Принцип работы люминесцентной лампы состоит в появлении внутри колбы газового разряда в газовой среде, смешанной с разреженными ртутными парами.

Далее под влиянием ультрафиолетового излучения начинает светиться люминофор, являющийся источником основного светового потока.

Как появились люминесцентные лампы

Прежде чем рассматривать вопрос, как работает люминесцентная лампа, необходимо хотя бы в общих чертах изучить историю ее появления. Впервые эффект свечения наблюдал известный русский ученый М.В. Ломоносов еще в середине 18 века.

В эксперименте был использован стеклянный шар, наполненный водородом. После того как к нему был приложен электрический ток, шар начал испускать видимый свет.

Однако это устройство не рассматривалось в качестве источника освещения, а полноценная работа в этой области началась уже в 19 веке.

В 1856 году немецкому стеклодуву Гейслеру удалось откачать воздух из стеклянной колбы с помощью изобретенного им же вакуумного насоса.

Обратите внимание

Используя высоковольтную катушку, он вызвал внутри колбы свечение зеленоватого цвета. Данное устройство получило название трубки Гейслера.

Немного позднее, в 1859 году Александр Беккерель осуществил покрытие трубок изнутри веществами, обладающими люминесцирующими свойствами.

Именно с этого момента началось развитие технологий данного типа освещения. Проводимые работы так и остались экспериментами, но сама идея получила дальнейшее развитие на практике.

Первую демонстрацию трубок Гейслера в 1891 году провел американский ученый Никола Тесла. Он на практике показал возможность светиться у трубок с различными покрытиями под действием высокочастотного электрического поля. В этом же году Тесла получил патент на аргоновые газоразрядные лампы, спроектированные для систем освещения.

Первые лампы для светильника на основе ртути удалось получить американцу Питеру Хьюитту. Ртутные пары светились мягким сине-зеленым светом, а по техническим характеристикам эти устройства превосходили лампы Эдисона. Однако полученные цветовые оттенки не нашли широкого применения в искусственном освещении.

Ровное белое свечение было получено в 1926 году немецким изобретателем Эдмундом Гермером. На внутреннюю часть колбы наносился флуоресцентный порошок – люминофор, после чего внутри нее увеличивалось давление. Свет от такого источника был гораздо ярче по сравнению с лампами накаливания. Конструкция этих устройств считается максимально близкой к современным люминесцентным лампам.

С 1934 года компания General Electric приобрела патент и приступила к выпуску осветительных приборов нового типа. Они сразу же приобрели широкую популярность и стали повсеместно использоваться в искусственном освещении вместо обычных лампочек.

Особенности конструкции

Колбы всех ламп, независимо от конфигурации, всегда имеют цилиндрическую форму. Их наружный диаметр составляет 12, 16, 26 и 38 мм. Чаще всего источники света изготавливаются прямыми, но некоторые из них сформированы в кольцо, букву U, спираль и т.д.

Устройство люминесцентной лампы предполагает герметичное соединение торцов со стеклянными ножками, внутри которых установлены зажигательные электроды. Они изготавливаются из вольфрама и закручиваются в спираль, так же как у обычных ламп накаливания.

Снаружи электроды соединяются со штырьками цоколя, выполняющими функцию контактов. Устройства прямой и U-образной формы для светильника оборудованы двумя видами цоколей – G5 и G13.

В указанной маркировке цифры означают размер зазора между штыревыми контактами в миллиметрах.

Важно

Рассматривая вопрос, как устроена лампа, следует помнить, что в одну из стеклянных ножек впаян специальный штенгель, через который производится откачка воздуха изнутри колбы. После этого внутрь закачивается инертный газ с небольшим количеством ртути, примерно 30 мг.

Вместо чистой ртути может использоваться амальгама, представляющая собой ее сплавы с такими металлами, как индий, висмут и другие. Вольфрамовые электроды покрываются активирующим веществом. Для этой цели используются оксиды бария, кальция или стронция.

В некоторых случаях к ним добавляется торий.

Основной функцией электродов является отдача и прием ионов и электронов, обеспечивающих течение электрического тока в пространстве, где образуется разряд. Чтобы запустить процесс термоэмиссии, они разогреваются до температуры 1100-1200 градусов.

Электроны начинают вылетать с поверхности активирующего вещества.

В процессе эксплуатации слой этих веществ постепенно уменьшается, происходит его оседание на стеклянных стенках, что делает зависимым от этого общий срок эксплуатации люминесцентной лампы.

Максимальное ультрафиолетовое излучение ртути достигается наиболее эффективным использованием разряда. Для этого внутри колбы должна поддерживаться определенная температура. Ее диаметр определяется именно этим техническим условием.

Работоспособность лампы для светильника во многом зависит от плотности тока. Чтобы найти эту величину, необходимо значение тока разделить на площадь сечения цилиндра.

Мощность лампы находится в прямой зависимости с ее длиной, поэтому просто так колбу нельзя сделать короче.

В связи с этим, габариты стали уменьшаться за счет измененной конфигурации, при которой общая протяженность изделия остается прежней.

Как работает устройство с люминофором

Принцип работы люминесцентных ламп во многом зависит от ее конструкции. Газ, наполняющий внутреннее пространство колбы, создает электропроводную среду с отрицательным сопротивлением. Его проявление заключается в изменении напряжения между электродами, расположенными с противоположных сторон. Напряжение начинает снижаться при возрастании тока, который требует ограничения.

Включение в работу люминесцентной лампы для светильника осуществляется при помощи электромеханической пускорегулирующей аппаратуры – ЭмПРА. Основными компонентами данной схемы служат дроссель и стартер.

Первое устройство создает импульс напряжения с большой величиной, обеспечивающий зажигание. Второй компонент представляет собой лампу тлеющего разряда, внутри которой в газовой среде размещаются два электрода.

Совет

Один электрод является биметаллической пластиной, а в исходном положении они оба разомкнуты.

Запуск лампы и ее принцип действия происходят в следующей последовательности:

  • В пусковую схему изначально поступает напряжение. Изначально ток не будет проходить через лампу, поскольку он ограничивается высоким сопротивлением внутренней среды. Он попадает на спирали катодов и производит их разогрев. Одновременно ток идет на стартер и дает толчок к образованию внутри него тлеющего разряда.
  • После того как под действием тока контакты дросселя разогреются, наступает замыкание биметаллической пластины. В результате, металл становится проводником и действие разряда прекращается.
  • На следующем этапе происходит остывание биметаллического электрода, что приводит к размыканию контактов. В дросселе под влиянием самоиндукции образуется импульс высокого напряжения, дающий толчок к зажиганию лампы.
  • Ток, проходящий через лампу для светильника, постепенно уменьшается в два раза из-за падения напряжения на дросселе. Его не хватает, чтобы повторно запустить стартер с разомкнутыми контактами, но сама лампа будет продолжать свою работу.

Если в один светильник установлены сразу две светящиеся лампы, схема включения предусматривает для них общий дроссель. Подключение ламп осуществляется последовательно, однако к каждой из них параллельно подключен собственный стартер.

При выходе из строя одной из ламп, вторая также отключается. В схеме включения рекомендуется устанавливать только качественные выключатели. У бюджетных моделей возможно залипание контактов под влиянием пусковых токов.

Поскольку дроссель и стартер являются основными компонентами пусковой схемы, их работу следует рассмотреть более подробно.

Дроссель: назначение и устройство

Люминесцентные светильники не могут быть включены как обычные лампы, одной лишь подачей электроэнергии. Для того чтобы они заработали и начали светиться, необходимо использовать специальную пускорегулирующую аппаратуру.

Ток, протекающий через электроды требуется ограничить, поэтому в схеме используется сопротивление, называемое балластом. Его функции выполняет дроссель, в котором присутствует реактивное сопротивление, не выделяя при этом лишнего тепла. Он ограничивает ток, тем самым предупреждая его нарастание после подключения к сети.

Читайте также:  Устройство индикаторной отвертки - советы электрика

Помимо включения, дроссель в пусковой схеме выполняет следующие функции:

  • Создает безопасный ток, достаточный для быстрого разогрева электродов в лампе при розжиге.
  • В обмотке образуется импульс высокого напряжения, благодаря которому внутри колбы возникает разряд.
  • Стабилизирует разряд при достижении током номинального значения.
  • Обеспечивает устойчивую работу лампы, несмотря на скачки и перепады сетевого напряжения.

Основным элементом дросселя служит катушка индуктивности, которая состоит из проводов, намотанных на сердечник. Именно она выполняет основную ограничивающую функцию. Вся конструкция залита компаундом – специальной массой, устойчивой к возгоранию. За счет этого обеспечивается дополнительная изоляция проводов. Катушка помещается в корпусе из термоустойчивой пластмассы.

Функции стартера в схеме подключения

Вторым компонентом, входящим в состав пускорегулирующей аппаратуры, является стартер, имеющий довольно простую конструкцию. Продукция разных производителей отличается собственными параметрами и техническими характеристиками, которые необходимо учитывать при покупке ламп. Однако устройство и принцип работы этих приборов одинаковый.

Конструкция стартера выполнена в виде стеклянного баллона, заполненного инертным газом – неоном или смесью водорода с гелием. В цоколь баллона неподвижно впаяны металлические электроды, выведенные наружу. Сама стеклянная конструкция располагается в металлическом или пластмассовом корпусе, покрытом термоизоляционным составом.

Параллельно с электродами подключен конденсатор емкостью 0,003-0,1 мкф, предназначенный для борьбы с радиопомехами, возникающими при контакте электродов.

Кроме того, данный элемент принимает участие в запуске лампы и понижает величину импульса напряжения, возникающего во время размыкания электродов.

Параллельное включение конденсатора существенно понижает вероятность залипания электродов под действием электрической дуги.

Основной функцией стартера является замыкание и размыкание электрической цепи, запуск механизма розжига инертного газа, закачанного в колбу.

При замыкании цепи электроды самой лампы нагреваются, и весь процесс зажигания заметно облегчается.

Обратите внимание

После нагрева цепь разрывается с одновременным образованием импульса повышенного напряжения, пробивающего газовый промежуток колбы. Такой принцип работы каждого стартера.

Несмотря на устойчивую и долговременную работу, схемы ЭмПРА с использованием стартера считается несовершенной. Рабочий процесс нередко сопровождается мерцанием, шумом дросселя и другими неприятными явлениями. Поэтому все современные люминесцентные лампы работают с более совершенной электронной пусковой схемой – ЭПРА.

Подключение через электронный балласт – ЭПРА

Схема ЭПРА с люминесцентными лампами функционирует на основе полупроводниковых элементов, что позволило снизить габариты и повысить качество работы этих устройств. Заметно возросли сроки эксплуатации, повысился КПД, появилась возможность плавной регулировки яркости, увеличился коэффициент мощности.

В состав схемы электронного пускорегулирующего устройства входят следующие компоненты:

  • Устройство для выпрямления тока и напряжения.
  • Фильтр электромагнитных излучений.
  • Корректор для регулировки коэффициента мощности.
  • Фильтр сглаживания напряжения.
  • Инверторная схема.
  • Элемент с функциями дросселя.

Схема ЭПРА может быть мостовой или полумостовой. Первый вариант предназначен для очень мощных ламп, а второй используют все остальные люминесцентные лампы низкого давления.

В основе работы электронного балласта лежат увеличенные частотные характеристики, обеспечивающие равномерное свечение, без каких-либо мерцаний.

Современные микросхемы, используемые в конструкции, позволили существенно уменьшить размеры устройства и обеспечить равномерный подогрев электродов.

Благодаря ЭПРА, люминесцентная лампа может быть автоматически подстроена под конкретные технические характеристики.

Источник: https://electric-220.ru/news/princip_raboty_ljuminescentnoj_lampy/2018-12-24-1622

Как устроена люминесцентная лампа?

Люминесцентные лампы (ЛЛ) находят свое применение в самых разных областях деятельности человека. Изобретение этого источника света и организация массового производства позволили значительно улучшить качественные характеристики искусственного освещения и повысить энергетическую эффективность (коэффициент полезного действия) светильников, укомплектованных ЛЛ.

Последовательная замена неэффективных ламп накаливания на люминесцентные ускорилась с началом производства компактных ЛЛ.

Самые современные на сегодня светодиодные источники света, несмотря на постоянное улучшение своих характеристик, пока не достигли некоторых параметров ЛЛ, например, по такому важному показателю, как цена.

Исследования физических процессов, возникающих в газах при пропускании через них электрического тока, позволили физикам и инженерам разработать источник света, в корне отличающийся от ламп накаливания, доминировавших долгое время.

Трубчатая люминесцентная лампа

Историческая справка

История создания люминесцентной лампы интересна и поучительна сама по себе. В процессе ее разработки появились дополнительно полезные и для других областей технологии: вакуумная откачка, получение разных по составу люминофоров и другие.

Сначала была изобретена вакуумная стеклянная трубка. В 1856 году немецкий изобретатель Генрих Гайслер изобрел вакуумный насос, позволивший удалять (откачивать) воздушную среду из стеклянной колбы. Впоследствии колба в виде прямолинейной трубки стала именоваться трубкой Гайслера.

На концы трубки припаивались металлические электроды для проведения экспериментов по пропусканию электрического тока либо через вакуум (остаточный газ в трубке), либо через различные газы, которые напускались после откачки воздуха.

При достижении напряжения пробоя от одного электрода к другому начинал течь ток и возникало свечение слабой интенсивности, цвет которого менялся в зависимости от того, какой именно газ напускался взамен удаленного воздуха: двуокись углерода (для белого свечения) или азот (для розового).

Экспериментальная лампа Гайслера

Далее французский физик Александр Беккерель в 1859 году предложил наносить на внутреннюю поверхность стеклянной трубки тонкий слой люминесцирующего слоя (люминофора), который начинал светиться в видимой области спектра при возбуждении атомов ультрафиолетовым (УФ) излучением.

В 1901 году американец Питер-Купер Хьюитт предложил добавлять ртуть, что существенно повысило яркость нового светового источника. ЛЛ была экономичней лампочек накаливания в 8 раз, но ее излучение имело сине-зеленый оттенок, придававший человеческим лицам жутковатый трупный цвет.

Важно

На основании этих результатов знаменитый американский изобретатель Томас Эдисон в 1907 году впервые запатентовал люминесцентную лампу с люминофором из вольфрамата кальция.

За год до Эдисона аналогичную лампу смог воспроизвести Даниэль Фарлан Мур, экспериментировавший с двуокисью углерода (СО2) и азотом (N2).

Ближе всего к современному варианту ЛЛ подошли в 1927 году немецкие изобретатели Эдмунд Джермер, Фридрих Мейер и Ганс Шпаннер.

Первоначальной целью их исследований было получение источника УФ-излучения. После нанесения люминофора определенного состава лампа стала давать равномерный белый свет, что привело Э.

Джермера к мысли о создании нового источника дневного света, комфортного для глаз человека.

Кроме этого инженеры значительно улучшили параметры ЛЛ, увеличив давление паров ртути. Получение соответствующего патента закрепило за Э. Джермером авторские права на базовые принципы устройства ЛЛ.

Люминесцентные лампы начали массово производиться и продаваться только в 1938 году, когда лампы четырех типоразмеров были обнародованы американской фирмой «General Electric», которая выкупила патенты и надолго получила почти монопольные права на освоение этого перспективного рынка.

Как устроена современная ЛЛ

Основной принцип действия современной люминесцентной лампы заключается в получении УФ-излучения с помощью пробоя газового промежутка между электродами и последующего преобразования этого излучения в видимый свет с помощью эффекта люминесценции в специальных фосфорсодержащих покрытиях, так называемых люминофорах. Варьируя состав люминофора, получают разные цвета видимого участка спектра, от синего до красного. На рисунке ниже схематично представлен разрез типичной ЛЛ.

Кроме указанных компонентов каждая лампа наполняется инертным газом (обычно это Ar) для увеличения ресурса вольфрамовых электродов.

Совет

Наличие ртути (Hg) в небольшом количестве резко увеличивает светоотдачу из-за роста плотности тока, вызванного повышением концентрации электронов, появляющихся в результате ионизации атомом этого металла.

Существуют версии ламп, в которых ртуть отсутствует, а УФ-излучение появляется только от ионизации атомов инертного газа. Световой поток таких светильников существенно меньше, но зато они безопасны при эксплуатации.

Принципиальная схема люминесцентной лампы

Специфика подключения ЛЛ

Для получения тока через лампу требуется произвести пробой промежутка газа, для чего подается напряжение порядка 1 000 вольт.

Ток растет лавинообразно, сопротивление резко падает (отрицательное дифференциальное сопротивление), что может привести к разрушению (перегоранию) лампы.

Чтобы предотвратить этот процесс, применяется устройство, называемое балластом (или балластником), с помощью которого ограничивают рост тока при достижении определенного уровня. Применяются два вида балластников:

  • электромагнитное пускорегулирующее устройство (ЭмПРА) – состоит из дросселя (активной нагрузки), последовательно подключенного в цепь лампы, и стартера, подключенного между нитями накала. Стартер представляет собой небольшую неоновую лампочку;
  • электронное пускорегулирующее устройство (ЭПРА) – это по сути плата с электронными деталями (диодами, транзисторами, динисторами, микросхемами).

В электронном варианте балластника отдельный стартер не нужен – его функции реализованы на общей плате. ЭПРА работает на высокой частоте (десятки кГц), что полностью устраняет эффект мерцания, присущий ЭмПРА.

ЭПРА имеют ряд неоспоримых преимуществ:

  • небольшие геометрические размеры и вес;
  • отсутствие мерцания и шума от вибраций, поскольку устройства работают на высоких частотах;
  • быстрое включение ламп;
  • снижение тепловых потерь по сравнению с ЭмПРА;
  • значения коэффициента мощности – до 0,95 ;
  • наличие в устройствах нескольких вариантов защиты от короткого замыкания, что продлевает ресурс изделий и повышает безопасность.

Электронное пускорегулирующее устройство

Типы ЛЛ

  • Высокого давления – для использования в осветительных установках большой мощности и для применения вне помещений, для повышения устойчивости к низким внешним температурам, правда, колба лампы может нагреваться до 300 °С.

Для уличного освещения эти лампы имеют общее название ДРЛ (дуговая ртутная лампа). Они имеют большую мощность , но плохую цветопередачу. Поэтому сфера их применения ограничена.

Основное отличие ДРЛ от трубчатой ЛЛ состоит в способе получения дугового разряда, требующего больших затрат электроэнергии.

ДРИ – это тоже дуговые ртутные лампы с добавками солей металлов (металлогалогеновые), имеют более высокую светоотдачу и могут давать цветовые оттенки. Этот тип светильников используется в архитектурной и рекламной подсветках.

  • Низкого давления – для применения в быту и для освещения крупных общественных и производственных помещений. Значения давления инертного газа в диапазоне 300–400 Па. В маркировке этих люминесцентных ламп первые буквы означают следующее:
    • ЛБ – белый свет;
    • ЛД – дневной свет;
    • ЛХБ – холодный белый свет;
    • ЛТБ – теплый белый свет;
    • ЛДЦ – дневной свет с улучшенной цветопередачей.

Преимущества и недостатки

Преимущества:

  • небольшая цена;
  • возможность получения различных оттенков белого цвета;
  • экономичное, по сравнению с лампами накаливания, энергопотребление;
  • незначительный нагрев поверхности лампы – не более 50 °С;
  • срок службы – до 8 000 часов. Лампы накаливания работают не более 2 000 часов;
  • световой поток – до 3 000 лм;
  • рассеянное, равномерное излучение по всей поверхности источника;
  • высокая световая отдача – до 85 лм/Вт;
  • большой выбор цветовых оттенков, не требующий применения дополнительных светофильтров.

Недостатки:

  • большие габариты (особенно для линейных ЛЛ);
  • наличие ртути (до 5 мг на одну лампу), что требует обеспечения дополнительных мер безопасности при эксплуатации;
  • проведение дополнительных работ по утилизации по окончании срока службы;
  • неравномерный спектр у дешевых ламп;
  • медленное включение, вызванное требованием постепенного разогрева электродов;
  • повышенная чувствительность к влажности;
  • мерцание с удвоенной частотой питающего напряжения при использовании электромагнитных балластников;
  • медленный запуск (или его отсутствие) при пониженных температурах внешней среды. При повышенных температурах ( более 50 °С) также высока вероятность отказов.

Источник: https://LampaGid.ru/vidy/lyuminestsentnye/printsip-dejstviya

Ссылка на основную публикацию
Adblock
detector