Три фазы что это такое – советы электрика

Перекос фаз в трехфазной сети: что это такое, причины, последствия, защита

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью.

При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни.

Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В).

К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения.

В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения  ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность.

Первая считается основной, она определяет номинальное напряжение.

Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью.

Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже.

В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

Обратите внимание

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь.

Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ.

Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах.

Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью.

Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях.

К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии.

В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения – установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ)  напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Источник: https://www.asutpp.ru/perekos-faz-v-trehfaznoj-seti.html

Объясните дураку: Чо такое трехфазный ток, и чем он отличается от однофазного

cor48 Мудрец (11822) 11 лет назадВозьмем три катушки (обмотки) и расположим их на окружности под углом 120 градусов, теперь поместим между ними магнит на оси и начнем его вращать. Сначала возникает ток в одной обмотке, потом в другой, затем в третьей.

Таким образом мы получим три источника переменного ( в форме синусоиды) тока, фазы которых будут сдвинуты на 120 градусов. каждая из фаз может использоваться отдельно, это и будет однофазный ток. Использование трехфазного тока позволяет упростить конструкцию электродвигателей, сделать их меньше и легче.

Достигается это за счет того, что к приводу подводится большая мощность без увеличения силы тока. Три фазы обеспечивают наилучшее соотношение между мощностью и расходами на материалы, провода, ЛЭП, арматура и др. Кстати в в вентиляторах для компьютеров применяются двигатели на 6-12 фаз.

Источник: Если ту же мощность подводить по двум, точнее по одноиу проводу нужно увеличить ток в три раза, кстати и плавность хода однофазного двигателя хуже.

Кот Чеширский Мастер (1677) 11 лет назад siver Мастер (1915) 11 лет назад Человек, которого не было Мудрец (16210) 11 лет назад(Ну, вообще-то не по трем проводам, а по четырем – но ноль на всяк случай, нормально по нему – нииичего. )Изобретатели переменного тока как-то вот поняли, что неудобно это – ток ведь то есть, а то нет: переменный… К ротору генератора мощность вроде подводится все время, постоянно, а снимается – то больше, то меньше, то вообще ничего. И так 100 раз в секунду. А на другом конце – потребитель. Тоже потребляет все время(ну хоть в течение одной секунды) одну и ту же мощность, а подводится – то больше, то меньше… Решили добавить другой провод – по одному меньше, а по другому больше, в сумме вроде …но получилось, что надо не два, а три.

Ну как мог, объяснил. На пальцах. А по науке тут и так уже все расписали.

Dims Просветленный (26768) 11 лет назадОднофазный ток, это переменный ток, который идёт по двум проводам: “земля” и “фаза”. Трёхфазный ток — это переменный ток, который идёт по четёрым проводам: “земля” и три “фазы”.Колебания тока в каждом из фазных проводов сдвинуты относительно соседнего на треть.Зачем это нужно? Дело в том, что три фазы — это минимальное необходимое количество фаз для того, чтобы проще всего создать вращающееся магнитное поле, что используется в электродвигателях. Соответственно, самый простой генератор электричества, который конструктивно представляет собой тот же электродвигатель, только работающий наоборот, вырабатывает три фазы тока. Можно было бы брать только одну из них, но зачем? Почему не брать все три, раз уж они всё равно вырабатываются? Кроме того, имея три фазы, проще всего запитать какой-нибудь электродвигатель.

В общем, получается, что три фазы — это конструктивно-оптимальное решение. Электростанция вырабатывает три фазы, но в те места, где все три не нужны, отправляют только одну.

Павел Мудрец (13763) 11 лет назадединственное что могу добавить, ноль – это весчь абстрактная, т.к. его не существует, есть 3 фазы и земля! ноль от земли отличается только тем что нулевой провод землится непосредственно на распределительной (трансформаторной) подстанции, а заземление, непосредственно, на объекте установки эл. оборудования! иногда разность потенциалов ноля относительно земли может достигать 15-20 вольт…конечному потребителю поставляются так-же 3 фазы (в эл. щитах поездов их 3!!!), но т.к. они ему нафиг ненужны, то в розетки подают всего одну, причем в каждую квартиру только одну, если на площадке 3 квартиры, то каждая питается от своей фазы! и нагрузка распределяется равномерно, иначе из-за длинны кабеля может возникнуть перекос фаз, к примеру если на одной нагрузка будет больше, то напруга на ней падает, но, при ентом она начинает возрастать на двух других, где нагрузка меньше, соответственно напряжение относительно земли повышается, что черевато выходом из строя аппаратуры… этим-же опасно и отгорание ноля в элеваторе (проподание токовой земли)…

для понятия основ рекомендую почитать учебники для электриков (есть такие в библиотеках), т.к. на пальцах объяснить довольно сложно почему и как достигается сдвиг фаз, почему ток переменный, и почему частота 50 герц… тут надо рисовать картинки, а енто делать некогда… да и на компе не очень-то охото – больно муторно, проще от руки, но сканить негде…,да и в 2х словах не объяснишь…

Источник: https://otvet.mail.ru/question/7663962

Электропроводка в доме

Как и обещал, рассмотрю в этой статье вопрос разбивки электропроводки квартиры по группам. Проводя электромонтажные работы, мы должны хорошо продумать проект, так как это навсегда зафиксирует наши возможности использования электропроводки. Будет нам в дальнейшем удобно или, сэкономив на электроматериалах, мы навсегда лишим себя различных возможностей, зависит только от нас. Кратко о моём принципе:

  • Минимум две линии на комнату, одна для освещения 1,5 мм2 и одна для розеток 2,5 мм2 (точнее определяется расчётом потребляемой мощности)
  • Отдельная линия для каждой группы устройств, которой нужно управлять отдельно
  • Отдельная линия для защищаемых устройств
  • Отдельная линия для мощных устройств. Например для плиты 4 мм2.

Для примера я возьму небольшой загородный дом: кухня и комната на первом этаже, две комнаты на втором, прихожая с лестницей, ванная, туалет, крыльцо. Кроме того, пристройки: баня, сарай, навес у сарая и беседка. Перенести из этого примера на квартиру все, что кто сочтёт нужным, не составит труда. Казалось бы, можно обойтись парой пробок, или по-современному несколькими автоматами, и возможно, во многих случаях так и стоит поступить. Я же рассмотрю, как можно построить в таком доме удобную и безопасную электрическую систему. Ещё я хочу сразу предупредить, что приведённая ниже схема принципиальная (то есть объясняет, что и к чему нужно подключить), а не исполнительная (короче, не прокладывайте кабеля так, как нарисованы соединительные линии на схеме). И не содержит ни каких значений и расчётов по мощности. Итак, приступим. Начнём с главного автомата, первого после счётчика, он обозначен цифрой 1. Я выбрал для примера трёхфазное подключение, поэтому автомат трёхфазный. Первое, о чём стоит подумать, после определения желаемой мощности подключения (этот этап я опускаю, у каждого свои потребности), это будете ли вы отключать электричество уезжая. Не такой важный вопрос при постоянном проживании, но очень насущный, если домик используется как место отдыха, или как летняя дача, или как место для проживания в тёплое время года. Поразмыслив, я пришёл к компромиссному решению и разделил всю электросистему на две части: ту, что буду отключать всегда и ту, которую буду оставлять работать целиком или частями. В результате появились автоматы 2 и 3. Отключать буду третий и всё, что подключено за ним. Первый никогда не буду отключать, чтобы не обесточить второй, а всё что за вторым по мере необходимости. Автомат №2 я решил установить для удобства ремонтных работ, если такие придётся проводить. Что мне не захотелось выключать уезжая?

  • Бойлеры (один на кухне, второй в ванне). Я отключу их на зиму, но летом я приезжаю на каждые выходные, прогреваются бойлеры долго, а мне хотелось бы в пятницу вечером приехав, принять душ, а не ждать, тем более, что приезжаю я поздно после работы. И ещё я отключу их, когда уеду больше, чем на неделю.
  • Насос, подающий воду из скважины. В моё отсутствие вода не нужна, но без электричества насос постепенно теряет давление, а мне не хочется каждую пятницу вечером заливать его по новой, что бы он начал работать. Однако на зиму его надо будет отключить и слить.
  • Холодильник. Я не планирую увозить и привозить все продукты, каждый раз, тем более, что часть заготовок будет храниться в этом холодильнике до глубокой осени. Значит, его тоже нельзя отключать до зимы.
  • Сигнализация (9). Я не собираюсь оставлять дом без охраны. Тем более, что ГСМ модуль позвонит мне на телефон, а у меня есть номер соседа, который не уезжает в город на неделе. Её я не планирую отключать вообще.
  • Уличное освещение. Его я разделил на две части: дежурное (17) и основное (18). Дежурное освещение горит всегда, даже зимой. Я задействовал экономные лампы и это не дорого, тем более что датчик света (11) выключает его в светлое время суток. С освещением дом не выглядит покинутым и так мне спокойнее за его сохранность. Всего я задействовал три лампочки: над крыльцом и по торцам дома. Теперь об основном освещении. Начиная с августа, по вечерам уже темно и я приспособил пяток мощных прожекторов, чтобы не ломать ноги пока хожу от бани и обратно и к костру, где жарим шашлыки. Заодно я подключил его к сигнализации, и он включится при её срабатывании. Надеюсь, что это напугает воришек.

Как видите, все эти устройства имеют разный режим работы для моего удобства и экономии денег, поэтому должны находиться на разных линиях, но в группе, которая сама всегда под напряжением. Итого шесть исходящих линий. Теперь посмотрим, как я собрал в щите эти линии. Это верхний ряд, справа от автомата №2.Первым делом я установил УЗО (Устройство Защитного Отключения) (4), для защиты от утечки тока в бойлерах, насосе и холодильнике. К нему подключил три двойных автомата (6) по одному на линию. Почему двойных? Что бы было удобно отключать ноль на защищаемых УЗО линиях. Одна линия ведёт к бойлерам, вторая к насосу, третья к холодильнику. Почему три линии? Во-первых, это в разных направлениях, а во-вторых, я предполагаю, что и выключать их буду тоже порознь. Холодильник будет работать почти до зимы, а бойлеры я начну выключать по завершении лета, как только перестану приезжать каждую неделю. Да, и ещё, линию на насос я проложил резиновым уличным кабелем. Хочу сделать небольшое отступление. Я вообще считаю, что много линий хорошо. Это облегчает ремонтные работы и при проблемах выбивает не весь дом, а только отдельную линию. Для целей ремонта я использовал и двойные автоматы. Что бы отключать ноль на линиях после УЗО. Это очень удобно при поиске неисправного прибора вышибающего УЗО. Об УЗО вы можете прочитать другую статью с нашего сайта. Кстати, не забудьте что нули с линий, защищаемых УЗО, обязательно должны подключаться к УЗО, а не на общий ноль. Для целей сбора этих нолей я установил в щит отдельную клеммную колодку (5), чтобы не пихать все провода под один болт, нарушая качество сборки щита. Продолжаем. Автомат №7 для подключения сигнализации. На ней не нужна защита от утечки, поэтому он запитан от главного автомата в этом ряду и одинарный. Но у сигнализаций есть другая проблема. Они легко перегорают во время гроз. Ставлю УЗМ (Устройство Защитное Многофункциональное)(8) для защиты сигнализации. Некоторые предлагают защищать весь щит сразу, но мне не нравиться сидеть без света и воды во время грозы, когда УЗМ срабатывает каждые 10 минут, отключая ток по всему дому. Переходим к свету. Автомат №10 подключает в щит дежурное освещение (17), заодно через него подаётся питание на датчик освещённости (11), который включает и выключает свет. Автомат №2 подключает основное уличное освещение (18). Обратите внимание, что питание подаётся не через выключатель к прожекторам, а через контактор (14). Это реле по своей природе. Оно нужно, так как обычный выключатель не может подключать нагрузку выше 400 ватт, а мои прожектора потребляют почти киловатт. Поэтому выключатель подаёт ток на управление реле (14), а оно (реле) уже в свою очередь подаёт напряжение на прожектора. Мощность контактов в таком реле значительно выше, чем в обычном выключателе. Так же и программируемый выход сигнализации при срабатывании подаёт напряжение на управление реле (14), что бы включился свет. Последними в ряду нарисованы клеммные колодки ноль (15) и земля (16), для сбора нулевых и земляных жил со всех проводов. Кроме нулей с УЗО. Заканчивая писать, я понял, что упустил ещё одну потребность и не нарисовал её. Переделывать рисунок уже не стану, но напишу здесь. Когда поздно осенью приезжаю в свой дом, то всегда мерзну, пока не растопятся печки, а это довольно продолжительный период, около трёх часов до комфортной температуры. В ряд не отключаемых устройств нужно добавить линию с электрическими обогревателями, но не оставлять её включённой, что стоило бы больших денег, а снабдить автоматическим выключателем с ГСМ модулем. Линия будет отключена в моё отсутствие, но за три – четыре часа до приезда, один звонок или СМС и на линию подаётся питание, радиаторы начинают греться и к моему приезду становиться тепло. Значит теперь семь исходящих линий. Перейдём к разбивке всей остальной системы, которую я буду всегда отключать перед отъездом автоматом №3. Первым стоит автомат (21) для света на лестнице (19) (порядок мог бы быть любым, но я решил так). Освещение на лестнице я решил организовать так, чтобы оно не горело постоянно. Можно было сделать вексель (с одной стороны выключил, с другой включил и наоборот), но я решил снабдить его таймером (22), который после каждого включения отсчитывает заданный интервал и отключает подачу напряжения. Выключатели (20) для такой системы должны быть импульсными (не фиксируются во втором положении, а отщёлкиваются обратно после нажатия). Дальше идут розетки и освещение для всех моих трёх комнат. По две линии на комнату, как я уже писал выше. Одна на освещение, вторая на розетки. Это всё обозначено цифрой 23. Теперь время подключить телевизор в гостиной и мой компьютер в кабинете. Они будут на разных линиях, так как находятся в разных комнатах, каждая из которых, приходит в свой двойной автомат (26). Можно было поставить одинарные, но так как я защитил эти линии УЗМ (25), то минус нельзя было брать с общей планки, а значит, пришлось бы поставить дополнительную клеммную колодку. Я решил для простоты коммутации использовать двойные автоматы. Пред УЗМ я установил ещё одинарный автомат (24), что бы удобно обесточивать его при необходимости, но это не обязательно. Важно иметь один предохранитель в каждой линии. Завершают линейку снова две клеммных колодки одна для нулей, вторая для земли с приходящих кабелей. Все эти клеммные колодки соединяются между собой по типам, а потом к нулевым колодкам подключается приходящий ноль, а земляные подключаются к вкопанному вами заземлению. Ещё девять исходящих линий. Переходим к третьему ряду. Он не имеет своего главного рубильника, так как является продолжением второго. Между собой ряды соединяются перемычками по фазам, если стоят физически в разных рядах электрощита. Дальше я планировал подключать плиту и линии с розетками, но так как они приходят из помещений, где возможна влажность, протечка воды и, как следствие, опасность для жизни человека, то сначала я установил УЗО (27). Не забудьте, что нули с линий, защищаемых УЗО не должны соединяться с прочими нулями, кроме как через УЗО. Для подключения плиты я задействовал четырёхрядный автоматический предохранитель (28) и резиновый кабель 4 мм2. О том, как подключать электрическую плиту на нашем сайте есть отдельная статья. А зачем пускать ноль через автомат я расскажу чуть ниже. Да ещё, многие считают, что подключать электроплиту через УЗО не стоит. Дело каждого, но одна неудачно выкипевшая кастрюля и моя жена в опасности. Мне это не подходит. Приходящие линии подключил на двойные автоматы, по одной на автомат. Количество этих автоматических предохранителей (29) зависит от количества линий и предполагаемой нагрузки. Я подключил так (слева на право): кухня, крыльцо, ванна и ванна свет, баня и баня свет. Если на кухне планируется серьёзная бытовая техника в ассортименте, то лучше розетки и точи подключения на кухне разбить на разные группы и соответственно подключить на разные фазы, что бы выровнять потребление по фазам (см. 29, как первые три автомата). Хочу немного отступить от темы и пояснить, почему я использую парные автоматы после УЗО. Как вы видите по схеме, через такой автомат я пропускаю и ноль, и фазу приходящей линии. Это нужно для удобства поиска утечек. Утечка может происходить не только с фазы на землю, но и с нуля на землю. Представьте, если начнёт выбивать УЗО, какая будет работа отсоединить все нули от колодки по очереди, что бы найти, что вышибает УЗО. А так, я легко выключу автоматы и, включая назад, определю линию с утечкой. Как только выбьет УЗО, значит подключаемая линия проблемная. После этого посмотрю, что на неё подключено и, отключая и подключая устройства, так же определю, какое из них неисправно. Ремонтом линии или заменой УЗО я займусь только, если проведённая проверка не даст результатов. Итак, ещё семь линий. Переходим к последнему четвёртому ряду. Начал я со света, который не поместился в предыдущий ряд. Три автомата (31) и три линии: в туалет, на крыльцо и на кухню. Кстати, я забыл про прихожую, но теперь ничего уж не поделать. Вот почему так важно тщательно продумать свою электросистему заранее. Дальше я собрал линию для подключения мощных устройств с моторами, например циркулярной пилы для пилки дров (32), есть ещё прессы для колки, шлифовальные станки, мало ли кому что нужно. Она защищена специальным автоматом для подключения моторов (34). Этот автомат умеет отличить скачок при пуске от короткого замыкания, к тому же может защитить моторы в моих станках от перегрева и перегрузок. Проложил я эту линия кабелем 4 мм2. Закончил специальным разъёмом (37). Дальше снова УЗО (34). Кто-то скажет: зачем два УЗО? Ведь можно всё подключить через одно! Можно, но не нужно. Причин две: во-первых, на улице высока вероятность попадания воды и как следствие возникновения утечки. Вряд ли моя жена скажет мне спасибо, если я пару раз в день буду отключать ей плиту или другие устройства на кухне, развлекаясь в саду. А во-вторых, во всех устройствах при работе возникает слабый ток утечки, а УЗО измеряет превышение его предела. Я не знаю точно, какие устройства будут одновременно задействованы на кухне и в саду, и поэтому не могу правильно рассчитать это значение для подбора УЗО, к тому же если я поставлю УЗО с высоким отключения, оно сможет выполнить только противопожарные функции, и не убережёт от поражения электрическим током. Через УЗО (34) я подключил: свет в беседке (35), её часто заливает косым дождём и там вода может протечь в лампы, и розетки (36) для подключения электроприборов в саду: пил, косилок, шлифовального устройства, соковыжималки, дробилки для веток и т.д. , которые разместил за дверью сарая, за дверью бани и одну с задней стороны дома в саду. Итого ещё 8 линий. Вот я и собрал электрическую систему в своём летнем домике. Сколько и каких розеток я расположил по комнатам, вы можете узнать, прочитав мою предыдущую статью. Итого в моей системе получилось:

  •     31 исходящая линия
  •     1 автомат на четыре группы
  •     3 трехфазных автомата
  •     15 автоматов на две группы
  •     14 однофазных автоматов
  •     один автомат с ГСМ модулем
  •     3 УЗО на три фазы
  •     2 УЗМ
  •     одно реле времени
  •     один контактор
  •     Щит на 100 позиций, 85 задействовано, остальные про запас.

Кто-то скажет, что это очень много и излишне для небольшого домика, но мне так удобно, к тому же всё вышеприведённое, методом убавления, вы легко сможете подстроить под свои реальные нужды. И не забывайте, что это не проект, так как он не содержит расчётов по мощности. Если вам нужен проект электрики для вашего дома, обращайтесь в нашу компанию: Электрики24.рф, можете так же написать мне лично: ilya@elektriki24.ru Желаю вам успехов в построении своей электрической системы, и помните: при работе с электричеством, безопасность превыше всего.

Источник: http://sovety.elektriki24.ru/elektromontaz-doma—poleznye-stati-i-sovety/elektromontaz—poleznye-stati/elektroprovodka-v-dome

Подключение электричества: три фазы или одна?

Подключение электричества: три фазы или одна?

Любой объект, будь то коттедж, дача или загородный дом не может обойтись без подключения электричества. Не освоенному  дачному участку, конечно, электричество «до фени», но как только принято решение о строительстве загородного дома проблема  подключения электричества становится насущной.

Перед тем, как обратиться за разрешением на подключение электричества к загородному дому, следует определиться с необходимой мощностью и нюансами ее распределения между имеющимися или перспективными источниками потребления.

Владелец загородного дома вынужден «чесать репу» и задумываться о том, как подключить электричество посредством трех фаз или одной?

Потребляемая мощность электричества в жилых домах непрерывно растет. Если сравнить современные бытовые электроприборы с электроприборами средины прошлого века,  то без вооруженного взгляда можно прийти к выводу, что потребляемая мощность электричества выросло в несколько раз.

Причем из года в год наблюдается тенденция постоянного увеличения потребляемой мощности электричества на душу населения.

Важно

Причина заключается в том, что в каждом доме появилась львиная доля бытовых потребителей электроэнергии (электрочайники, стиральные машины, электроутюги) ,  которые характеризуются повышенным спросом на подключение электричества и требуют соответственно потребляемую мощность большего объема.

 Нормальное функционирование и жизнеобеспечение загородного дома не мыслится без таких  потребителей электроэнергии, как электронасосов, электрических котлов, сварочных аппаратов, электродвигателей, ТЭНов различного назначения и др. силовых агрегатов. Поэтому в загородных домах все чаще стали подключать три фазы электричества, отказываясь от  традиционной однофазной электросети.

В чем же преимущество трехфазной электросети от однофазной?

Многие владельцы загородных домов считают, что трехфазная электросеть допускает потреблять больше мощности, т.е. подключать больше потребителей. Однако это предположение не в полной мере соответствует действительности.

В инструкции ФАС указано, что максимально разрешенная мощность для загородного дома составляет 15 кВт без привязки к трехфазной или однофазной электросети. Конкретная потребляемая мощность для того или иного загородного дома указывается отдельно в технических условиях на подключение электричества.

Как правило,  потребляемая мощность определяется возможностями трансформаторной подстанции (ТП) электросети и предполагаемым числом точек подключения электричества.

В этом случае соответствующие органы могут установить  единую потребляемую мощность, например, те же 5 кВт, как для трехфазной электросети, так и для однофазной. Таким образом, в потребляемой мощности здесь выигрыш практически отсутствует.

В то же время не следует забывать, что при одинаковой потребляемой мощности для ввода  трехфазной электросети в загородный дом можно использовать силовой кабель с жилами меньшей площади сечения.

Причина кроется в том, что потребляемая мощность, а, следовательно, и ток распределяются по трем фазам. Тогда в меньшей степени нагружается каждый фазный провод и номинал вводного автоматического выключателя в трехфазной электросети, будет тоже соответственно меньшим.

Вместе с  тем, возрастает в два раза число жил вводного силового кабеля: с двух до четырех, вместо одно(двух) полюсного вводного автоматического выключателя потребуется трех(четырех) полюсный, а для учета электроэнергии – трехфазный электросчетчик.

Совет

Вследствие этого увеличиваются габариты электрощитка (ЩРН) и соответственно стоимость материалов и комплектующих узлов.

В дополнение ко всему следует отметить, что, как правило, все наиболее распространенные бытовые потребители электроэнергии рассчитаны для работы в однофазной электросети переменного тока.

Однако недостатки трехфазной электросети меркнут перед ее преимуществами.  Для любого владельца загородного дома «фора» трехфазной электросети проявляется с первых же  минут. С одной стороны, известно, что асинхронные электродвигатели в трехфазной электросети работают с лучшими энергетическими и механическими параметрами.

Следовательно, реализуется возможность непосредственного подключения электричества к таким  трехфазным потребителям электроэнергии, как электрические котлы, асинхронные электроприводы и др .  С другой стороны, мощные потребители электроэнергии – те же котлы, электроплиты, обогреватели, сварочные аппараты и т.д.

  не вызывают «перекоса фаз», так как нагрузка таких потребителей электроэнергии равномерно распределяется между тремя фазами электросети.

Проблема «перекоса фаз» довольно-таки щекотливая, поэтому есть смысл рассмотреть ее более детально.

Перекос фаз проявляется в трехфазных четырех(пяти)- проводных электросетях с глухозаземленной нейтралью и напряжением до 1 000 В.

 Как правило, низковольтная трехфазная электросеть напряжением 400 В (0,4 кВ)  содержит источники электроэнергии, обмотки которых соединены  «звездой» с выведенным нулем.

Идеальную модель, отображающую взаимосвязь и взаимное расположение фазных и линейных напряжений можно изобразить в виде равностороннего треугольника с вершинами «А», «B», «С» и центром «0».

Обратите внимание

Разности потенциалов между точками — АВ, ВС и CA  являются линейными напряжениями (380 В), а разности потенциалов между точками — 0A, 0B и 0С являются фазными напряжениями (220 В). В идеальном случае фазные напряжения равны между собой U 0A = U 0B = U 0С  и сдвинуты друг относительно друга на угол 120°, т. е.

L  A0B = L B0C= L C0A=120°.  При симметричной нагрузке для соединения обмоток звездой справедливо такое соотношение между линейными и фазными токами и напряжениями:

а  мощность трёхфазной сети равна:

Из формулы видно, что мощность трехфазной электросети сети отличается от мощности однофазной не в три раза, как вначале предполагалось, а всего лишь примерно в 1, 73 раза.

Представленная выше на рисунке модель электросети является идеальной и перекос фазных напряжений в ней отсутствует.

  Но по той причине, что к трансформаторной  подстанции электросети подключается множество потребителей электроэнергии, в том числе и однофазных, то в каждый случайный момент времени можно ожидать, что  нагрузки в разных фазах будут заметно отличаться.

Причем если даже однофазные нагрузки по величине одинаковы, то их подключение к электросети  или отключение не может происходить синхронно.

Возникает ситуация, когда  Z A  >  Z B  >  Z C  ≠  0, где «Z» – это полное сопротивление нагрузки, и, соответственно, «Z A» — это полное сопротивление нагрузки на фазе А, «Z B» — это полное сопротивление нагрузки на фазе B, «Z C» — это полное сопротивление нагрузки на фазе C.  Если взглянуть на приведенный ниже равносторонний треугольник, то  графически это будет выглядеть следующим образом:  точка 0 в центре треугольника, из которой исходят векторы идеальных фазных напряжений величиной 220 В:  E 0A, E  0B и E  0С  — смещается относительно центра треугольника.

Щелкните по картинке и наглядно убедитесь к чему приводит перекос фаз.

Пусть будет это точка 0′. Смещаются и сами векторы фазных напряжений на произвольный угол друг относительно друга. Смещенные векторы фазных напряжений E 0’A, E 0’B и  E 0’С не равны между собой, т.е.

E 0’A ≠ E 0’B ≠ E 0’С. Таким образом,  напряжения в каждой фазе никогда не будут иметь одинаковый сдвиг и значение.

Отсюда различие фазных нагрузок по величине и характеру создает условия для возникновения перекоса фазных напряжений.

Важно

При симметричной нагрузке в трёхфазной электросети подключение потребителя электроэнергии к линейному напряжению возможно даже при отсутствии нейтрального провода. Однако, при подключении  потребителя электроэнергии к фазному напряжению, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно.

В случае обрыва  или значительного увеличения его  сопротивления (плохой контакт)  также происходит так называемый «перекос фаз».

  В конечном итоге подключенный потребитель электроэнергии, рассчитанный на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода).

Повышенное напряжение  зачастую является причиной выхода из строя бытовой радиоэлектронной техники, а также может привести к пожару.  Пониженное напряжение также не всегда благоприятно влияет на радиоэлектронную технику и может послужить причиной выхода ее из строя.

К этому больше всего подвержены электродвигатели холодильников. Поэтому дорогостоящие аппараты (электрические котлы, компьютеры,  холодильники,  стиральные машины, телевизоры и др.) следует подключать к электричеству в загородном доме через стабилизаторы напряжения.

Для этих целей в трехфазной электросети можно выделить даже отдельную фазу.

В однофазной электросети перекос фаз часто становится причиной того, что потребители электроэнергии, подключенные к «неудачной фазе», вынуждены мириться со слишком низким напряжением в электросети, что в большей степени касается проблемы  подключения электричества к загородному дому.

Обладателей трехфазной электросети такие вопросы «колышут» меньше всего, поскольку у них есть возможность подключения (переключения)  особо важных и капризных однофазных потребителей электроэнергии к той фазе, напряжение которой меньше всего подвержено просадке из-за перекоса фаз.

Подключение электричества к загородному дому с помощью трех фаз не снимает полностью проблему перекоса фаз, так как в общей электросети,  как указывалось ранее,  достаточно много разных потребителей электроэнергии. Однако в своей внутренней электросети, т.е.

Совет

после прибора учета электроэнергии, необходимо распределить нагрузку однофазных потребителей электроэнергии максимально равномерно.

Далее, при подключении электричества к загородному дому не следует упускать из вида то, что напряжение трехфазной электросети составляет 380 В, которое ощутимо выше привычных 220 В.

Поэтому при работе и эксплуатации трехфазной электросети требуется повышенное внимание уделять электробезопасности. Если подходить с позиций норм пожарной безопасности, то трехфазная электросеть также более опасна по той причине, что ток короткого замыкания будет намного выше.

На заметку. Нередко в ТТХ однофазных электрических аппаратов  указываются два значения питающего напряжения, в частности для некоторых типов сварочных трансформаторов —  220 В и 380 В, т.е. фазное напряжение и линейное соответственно.

Учитывая большую потребляемую мощность подобными изделиями, рекомендуется с целью уменьшения перекоса фаз подключать их к линейному напряжению 380 В, т.е. к двум фазам.

При выборе фаз следует исходить из того, чтобы фаза, от которой осуществляется питание бытовой радиоэлектронной техники, чувствительной к перепадам напряжения, не была задействована.

Подводя итог сказанному,  следует еще раз акцентировать внимание на основных недостатках и преимуществах подключения трехфазной электросети к загородному дому.

Итак, к основным недостаткам трехфазной электросети можно отнести:

  • Необходимость получения разрешения и технических условий от районной Электросети (РЭС), что связано с определенной волокитой для владельца загородного дома. В дачном кооперативе этот процесс менее болезненный, так как его согласование обычно проходит на уровне Правления.
  • Опасность поражения электрическим током и пожарная опасность существуют при любом раскладе, но эти опасности обостряются при эксплуатации трехфазной электросети. Поэтому, помимо автоматического выключателя, устанавливаемого обычно перед электросчетчиком на вводе электричества в дом, необходимо предусмотреть четырех полюсный  автоматический выключатель типа УЗО или дифференциального автомата с небольшим током утечки
  • Необходимость установки модульных ограничителей перенапряжения в ЩРН, поскольку не исключен обрыв индивидуального рабочего нуля во внутренней трехфазной электросети, последствия которого чреваты перенапряжением в одной наименее нагруженной фазе.
  • Увеличение габаритов ЩРН.  Но по сути дела это не столь заметно, так как современные электронные счетчики и автоматические выключатели как для трехфазной электросети, так и для однофазной отличаются от своих предшественников компактностью и небольшими размерами.

Основные преимущества трехфазной электросети:

  • Возможность непосредственного подключения электричества к трехфазным мощным потребителям электроэнергии.
  • Перераспределение потребляемой мощности  между фазами, сводя перекос фаз к минимуму.
  • Снижение номиналов по току автоматических выключателей и площади сечения жил силового кабеля.
  • Возможность увеличения в некоторых случаях максимально разрешенной потребляемой мощности электроэнергии при лояльном отношении районной Электросети.

Таким образом, практика подключения электричества с использованием трехфазной электросети себя оправдывает, если жилая площадь загородного дома более 100 кв. м.

В этом случае однофазных потребителей электроэнергии может быть очень много и нагрузку во внутренней электросети можно распределить с соблюдением максимальной симметрии.

Также трехфазная электросеть удобна тем владельцам загородных домов, который планируют подключение электричества для мощных трехфазных потребителей электроэнергии.  В остальных случаях подключение трехфазной электросети может оказаться излишним и стать причиной очередной головной боли владельца загородного дома.

В заключение для тех, кто любит мастерить своим руками будет полезен  «Сборник технической литературы».

Источник: http://barabyn.ru/blog/elektrotexnika/podklyuchenie-elektrichestva-tri-fazy-ili-odna.html

Однофазный или трехфазный ввод?

При проектировании мелких объектов многие задаются вопросом: какие брать ТУ для электроснабжения, однофазное или трехфазное подключение? В этой статье я расскажу, как поступать в подобных ситуациях и про особенности однофазного и трехфазного ввода.

Раньше я занимался проектированием только крупных объектов и данная тема меня не волновала. Сейчас порой приходится подключать частные дома, стройплощадки и другие мелкие объекты небольшой мощности.

Для начала нужно знать, что из себя представляет однофазный ввод, а что – трехфазный.

В качестве примера возьмем частный дом, который подключается к воздушной ЛЭП.

Многие думают, что если трехфазный ввод, то мы может подключить в 3 раз больше мощность.

Что тяжелее? Килограмм  ваты или килограмм железа?

Здесь такая же ситуация. Допустим в первом варианте нам предлагают запитать дом однофазным вводом на 6кВт, а по второму –трехфазным на 6кВт. Какой вариант выберите вы?

Обратите внимание

Первый вариант позволит вам подключить 3 чайника по 2кВт (L1=2кВт+2кВт+2кВт), второй  — те же 3 чайника по 2кВт (L1=2кВт, L2=2кВт, L3=2кВт).

Предпочтительнее посадить дом на трехфазный ввод, т.к. при таком варианте потери напряжения в питающей сети будет в 6 раз меньше по сравнению с однофазным вводом.

Но, в таком случае возникает проблема равномерной загрузки всех фаз, поскольку электроприемники  в таких объектах имеют разную мощность и разные коэффициенты спроса.

Пример из моего опыта. Подключал так называемый дом отдыха с бассейном. Основные потребители: освещение 0,3кВт, телевизор 0,1кВт и система управление бассейном около 3,5кВт. Заказчик изначально взял ТУ на трехфазный ввод. Как в таком случае добиться равномерной загрузки фаз?  Пришлось менять технические условия.

Я считаю, что объекты до 6кВт  должны иметь однофазный ввод.

Это упростит распределение нагрузки по фазам, позволит сэкономить на счетчике, питающем кабеле, вводном автоматическом выключателе, поскольку трехфазные стоят дороже.  При однофазном вводе проще расставлять защитные автоматы.

Например, стройплощадка 3 фазный ввод 6кВт. 6кВт это около 12А.  При таком раскладе на вводе у нас будет  с учетом селективности 20-25А. А это соответствует мощности в 2 раз больше. В случае однофазного ввода 6кВт на вводе будет автомат на 40А при расчетном токе 34А. В данном случае автомат в некоторой степени можно рассматривать как устройство ограничения мощности.

Разумеется, если имеются трехфазные электроприемники, то об однофазном вводе не может заходить и речи.

А по поводу больших потерь в однофазных сетях могу сказать следующее. Потери напряжения в однофазной сети длиной 80м  и передаваемой мощностью 6кВт составляют около 4%, что является вполне допустимым. Сечение алюминиевого кабеля должно быть не менее 2×16. Меньше брать не допускается.

В ТКП 45-4.04-149-2009 есть требование:

Важно

Но я думаю оно относится к жилым многоэтажным домам. В СП 31-110-2003  такого требования не нашел.

Теперь думаю будет понятно, когда следует проектировать однофазный ввод, а когда трехфазный.

Или вы не согласны со мной?

Источник: http://220blog.ru/pro-vybor/odnofaznyj-ili-trexfaznyj-vvod.html

Трёхфазный ток, преимущества трёхфазного тока при использовании

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Большинство людей, за исключением специалистов – электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, – часто путаются.

Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей – протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь.

Аналогия с протеканием тока – полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки – уровня моря – будет соответствовать электрическому потенциалу любой точки цепи.

А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.

Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение – перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.

Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла – по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.

Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление – аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.

Совет

Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать – никакого тока в проводнике это не вызовет.

Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит.

Магнит можно передвигать возле катушки как угодно – двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера.

Вот именно таким образом – по техническим причинам – мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида – это развёрнутое во времени описание вращения.

В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов.

А для переменного тока – сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор – разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением.

Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока.

Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.

Обратите внимание

Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая – электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом.

А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения.

Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок – двигатели переменного тока.

Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении – если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?

Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита.

Причём переменный ток в катушках будет отличаться по фазе – максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих.

То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство – сдвиг фаз, о котором мы расскажем ниже.

(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).

Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх – и четырёхпроводную систему передачи трёхфазного переменного тока.

Важно

Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю.

Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали – нулевой.

Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.

По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные трансформаторы получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.

Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе – А, В и С, у потребителя – L1, L2 и L3. Нулевой провод так и обозначается – 0. 

Напряжение между нулевым проводом и любым из фазных проводов называется – фазным и составляет в сетях потребителей – 220 вольт.

Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов.

Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт.

Напряжение – это разность потенциалов, то есть оно будет + 200 – (-180)=+380 В.

Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» – между фазными проводами.

Совет

Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются.

Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой – чтобы уменьшить потери в проводах на нагрев.

Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. Линии электропередач (ЛЭП) так и обозначаются, к примеру, ЛЭП – 500 – это линия электропередачи под напряжением 500 киловольт.

Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.

  1. Экономия на количестве проводов, необходимых для передачи электроэнергии. Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной.
  2. Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
  3. Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок. Замечательное свойство таких двигателей – это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
  4. Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
  5. Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.

Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.

Источник: https://www.Pergam.ru/articles/trehfazny-tok.htm

Ссылка на основную публикацию
Adblock
detector