Схема балласта люминесцентной лампы – советы электрика

Ремонт электронных балластов люминесцентных ламп

В данной статье я расскажу распространенные поломки современных «балластов» люминесцентных ламп, способы их ремонта, приведу аналоги радиодеталей, которые можно использовать для ремонта. Т.к. данные лампы еще довольно распространены в быту (например, у меня ежедневно используется 5 таких ламп), думаю, тема более чем актуальна.

Если у Вас перестала светить люминесцентная лампа, первым делом необходимо заменить саму люминесцентную «колбу». В ней может быть две неисправности: выход из строя одного из каналов (обрыв спирали накала) или банальный эффект «старения».

Если в темноте на включенной лампе наблюдается еле заметное свечение нитей накала, то, вероятней всего, поломка электронного «балласта» заключается в пробое конденсатора, соединяющего нити накаливания (см. рис.

Обратите внимание

п.2). Его емкость 4,7n, рабочее напряжение 1,2kV. Лучше заменить на такой же, только с рабочим напряжением – 2kV. В дешевых балластах встречаются конденсаторы на 400 или даже 250V. Они и выходят первые из строя.

Когда действия из предыдущего абзаца не помогли, нужно начинать проверку радиодеталей с предохранителя на схеме. Он часто есть в наличии, но у меня на плате он отсутствует (см. рис. п.1).

Следующее на что следует обратить внимание – транзисторы (см. рис. п.1).

Они могут выйти из строя из-за скачков напряжения, например, если дома стоит релейный стабилизатор напряжения, или часто Вами или соседями используется сварка.

Данные транзисторы для замены можно найти в блоках питания энергосберегающих ламп. Т.к. такие лампы часто выходят из строя из-за поломок колбы, то схема и, соответственно, транзисторы, остаются рабочими.

Если таких лам нет, то можно заменить транзисторы аналогами. Аналоги транзисторов 13001, 13003, 13005, 13007, 13009 приведены в таблице ниже. Самими популярными заменами являются такие аналоги как КТ8164А и КТ872А.

Иногда нужно прозвонить остальные радиодетали и заменить их, в случае, если найдены поврежденные. После каждого этапа ремонта балласта люминесцентных ламп, первое их включение рекомендуется производить через последовательно включенную лампочку накаливания в 40 Ватт. По ее свечению можно будет увидеть наличие короткого замыкания.

Важно помнить, что современные электронные балласты – это импульсные устройства, которые включать без нагрузки (в нашем случае – люминесцентной лампы) строго запрещается, т.к. это приведет к выходу их из строя.

В случае если Вы все перепробовали, но ничего не помогло, или возиться с балластом нет желания, то можно использовать импульсный блок питания от энергосберегающей лампы. Его размеры настолько малы, что легко помещаются в некоторых корпусах для люминесцентных ламп.

Важно

В таком случае нити накала люминесцентной лампы подключаются к контактам на плате, куда подключались контакты колбы энергосберегающей лампы. Мощность блока питания должна приблизительно соответствовать мощность лампы.

Лично у меня 36W люминесцентную лампу питает блок питания от лампы 32W.

Источник: http://best-chart.ru/remont-kompyuterov-telefonov-bytovoj-texniki/remont-elektronnyx-ballastov-lyuminescentnyx-lamp.html

Электронный балласт для ламп лдс

   Очередная прогулка по магазинам завершилась покупкой балласта для ламп дневного освещения. Балласт на 40 ватт, способен питать одну мощную ЛДС или две маломощные по 20 ватт. 

   Интересно то, что цена такого балласта недорога, всего 2 доллара. Для некоторых, покажется, что все-таки 2$ за балласт дороговато, но после вскрытия, оказалось, что в нем использованы компоненты в разы дороже общей цены балласта. Одна только пара мощных высоковольтных транзисторов 13009 уже стоят более доллара каждый. 

   Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.

   Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно – но всё-таки снижает. Примеры – на схемах ниже:

   Простая схема электронного балласта (без микросхемы управления) почти мгновенно зажигает лампу. И для долговечности лампы это плохо. За короткое время нить накала не успевает разогреться, а высокое напряжение, приложенное между ее нитями, вырывает из нити накала требуемое количество электронов, необходимое для зажигания лампы, и этим разрушает накал, понижая его эмиссионную способность. Типовая принципиальная схема электронного балласта:

   Поэтому рекомендуется выбирать белее серьёзную схему, с задержкой подачи питания (клик для увеличения):

   В схеме купленного балласта особенно порадовал сетевой фильтр – чего нет в электронных трансформаторов для галогенных ламп. Фильтр оказался не простой: дроссель, варистор, предохранитель (не резистор как в ЭТ, а самый настоящий предохранитель), емкости перед и после дросселя. Дальше идет выпрямитель и два электролита – это не похоже на китайцев.

   После уже идет стандартная, но в разы улучшенная схема двухтактого преобразователя. Тут сразу на глаза бросаются две вещи – теплоотводы транзисторов и применение более мощных резисторов в силовых цепях, обычно китайцам без разницы, где ток в цепи больше или меньше, они используют стандартные резисторы 0,25вт.

   После генератора идут два дросселя, именно благодаря им происходит повышение напряжения, тут тоже все очень аккуратно, никаких претензий. Даже в мощных электронных трансформаторах китайские производители редко используют теплоотводы для транзисторов, но здесь как видим они есть, и не только есть, но и очень аккуратны – транзисторы прикручены через дополнительные изоляторы и через шайбы. 

   С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.

   Подключил устройство – оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях – молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.

   Форум по электронным преобразователям

Источник: http://radioskot.ru/publ/bp/ehlektronnyj_ballast_dlja_lamp_lds/7-1-0-540

Подключение люминесцентных ламп с дросселем

Как известно, люминесцентные лампы уже давно получили широкое распространение в самых различных областях применения.

Прогресс зашел настолько далеко, что даже в быту стало возможным использование этого осветительного элемента, хотя люминесцентные лампы, начавшие свою историю в нашей стране в 30-е гг ХХ века, ранее использовались исключительно в целях освещения зданий какого-либо специализированного назначения, в которых требовалось круглосуточное снабжение светом.

Естественно, что и на рынке осветительных элементов люминесцентные лампы представлены в великом множестве, разнообразие моделей способно удовлетворить практически любые эксплуатационные назначения.

Вместе с этим появились и самые разнообразные схемы подключения этого устройства, каждый из которых отличается своей спецификой и подходит для определенного типа ламп.

Совет

Стоит сразу отметить тот факт, что работы по подключению люминесцентных ламп требуют куда большего внимания и знаний, чем аналогичные манипуляции с теми же привычными нам лампами накаливания.

Этот процесс отличается куда большим числом нюансов и тонкостей, соответственно, и уровень сложности возрастает в разы.

И, что немало важно, от правильности подключения зависит то, насколько эффективной и долговечной будет ее работа. И конечно, необходимо предварительно ознакомиться с устройством этого светильника.

Особенности и тонкости при подключении люминесцентных ламп

Как известно, люминесцентные лампы относятся к числу газозарядных устройств. А любая лампа такого типа отличается, пожалуй, самым важным для внимания качеством: напрямую подключить такое изделие в сеть никак нельзя.

На вопрос, почему нельзя этого сделать, ответ имеется в двух вариантах:

  • в состоянии, так сказать, «покоя» лампы имеют довольно высокий показатель сопротивления, для запуска ее механизма в работу нужен импульс, который будет отличаться высоким показателем напряжения;
  • люминесцентная лампа, получив импульс и образовав в себе разряд, получает довольно высокий показатель дифференциального сопротивления, соответственно, при таких условиях нельзя обойтись без сопротивления, иначе лампа просто сгорит.

Для решения этой проблемы был введен в систему элемент – балласт.

Балласт – это специализированный пускорегулирующий механизм, обеспечивающий происхождения правильного алгоритма процессов в люминесцентной лампе и обеспечивающий необходимые условия для ее работы.

На сегодняшний момент существуют две разновидности балластов. ЭмПРА и ЭПРА. Подключение с использованием каждого из вышеназванных элементов отличается своими тонкостями в работе.

К содержанию

Подключение люминесцентной лампы с использованием ЭмПРА: при помощи электронного дросселя

Аббревиатура ЭмПРА не слишком понятна пользователю, не отличающемуся широким диапазоном знаний в области электроники и электротехники. Тем не менее, расшифровывается она довольно просто.

ЭмПРА – это электромагнитный пускорегулирующий аппарат.

Он представляет собой катушку индуктивности, также известную как дроссель, обладающий индуктивным сопротивление. Сопротивление это должно быть в определенном размере.

Дроссель подключается с люминесцентной лампой последовательно, однако лампы тоже должны обладать определенной мощностью.

Далее требуется подключить стартер, делать это нужно тоже строго определенным способом: последовательно нитям накаливания.

Кстати, говоря о стартере, необходимо разъяснить, что именно представляет собой это устройство. Стартером называется неоновая лампа, оснащенная биметаллическими электродами, в сочетании с конденсатором.

Важно учесть тот факт, что подключены эти два устройства параллельно.

После того, как все вышеуказанные элементы подключены, происходит определенный процесс: дроссель подвергается самоиндукции. В результате этого он формирует импульс, который отвечает за запуск, причем, величина его, как правило, не превышает 1 кВ.

Обратите внимание

Помимо этой функции дроссель еще и ограничивает ток, опираясь при этом на индуктивное сопротивление.

Если говорить о качественных характеристиках ЭмПРА, то здесь, пожалуй, можно выделить значительно число негативных сторон в то время, как положительных моментов наберется довольно мало.

ЭмПРА отличается довольно низким ценовым показателем, да и сама конструкция его довольно проста.

В перевес этому представлен ряд негативных сторон приобретения и использования этого балласта:

  • запуск осуществляется довольно долго;
  • дроссель, обязательно входящий в структуру ЭмПРА, потребляет сравнительно много электроэнергии;
  • коэффициент мощности очень низок, и для увеличения его требуется применение компенсирующих конденсаторов;
  • пластины воспроизводят гудение, отличающиеся низкой частотой, и что самое неприятное, оно в последствие возрастает;
  • конструкция обеспечивает мерцание люминесцентной лампы, а это очень негативно влияет на восприятие света глазом и практически гарантирует возможные проблемы со зрением у потребителей;
  • габариты устройства слишком велики и неудобны;
  • отрицательные температурные показатели оказывают настолько сильное влияние на ЭмПРА, что при них он просто не осуществляет запуск, а значит, люминесцентные лампы на такой системе просто напросто не включатся.

Схема подключение люминесцентной лампы с использование ЭПРА

Помимо электромагнитного пускорегулирующего аппарата, который, как можно сделать вывод из вышесказанного, осуществляет свою работу не слишком качественно, существует и другой способ запустить все необходимые процессы в люминесцентной лампе.

Читайте также:  Какой дифавтомат выбрать для дома - советы электрика

Это ЭПРА, то есть, электронный пускорегулирующий аппарат.По сравнению с ЭмПРА такой балласт намного безопаснее и оптимальнее для использования его потребителем.

К ряду достоинств такого устройства можно отнести, например, то, что люминесцентная лампа исключает мигание, которое отрицательно влияет на состояние сетчатки глаз пользователей.

Обеспечивается это следующей особенностью ЭПРА: лампы от него питаются не сетевым током, а обладающим высокой частотой.

Разница в показателях весьма значительна, соответственно, неприятное мигание удается нивелировать.

К числу достоинств ЭПРА можно отнести и следующие:

  • снижается потребление электроэнергии, что позволяет сэкономить на ее оплате;
  • электронные балласты представляют в своем ряду и устройства, позволяющие регулировать яркость освещения;
  • затраты на производство и ликвидацию отходов от такого устройства значительно ниже;
  • отлично подходят для централизованного освещения, оснащенных автоматической регулировкой, экономя электроэнергию;
  • при монтаже и установке ЭПРА не требуется специальный стартер, подключенный отдельно, система сама способна создать необходимые условия для совершения работы.

В настоящее время электронный балласт может быть представлен в двух моделях.

Основное их различие заключается в том, что каждая из их осуществляет запуск отличным от другого способом. Одним из них является холодный запуск, а другим – горячий.

Холодный запуск обуславливает свою работу следующей особенностью: лампа зажигается сразу, как только ее включают.

Правда, в этом случае есть и некоторый нюанс: этот способ хорошо подойдет только тем лампам, которые редко проходя процесс включения/выключения.

При соблюдении такого условия сохраняется рабочее состояние электродов лампы, а значит, она не выйдет из строя раньше времени.

Горячий запуск
не зря получил такое название.

Важно

Он сначала прогревает электроды, а потом уже дает пуск включению лампы. Интервал между этими действиями не слишком значителен – не более 1 секунды.

Состояние лампы при этом сохраняется идеальное даже при частом включении/выключении, а значит, она честно прослужит весь отведенный ей срок.

К содержанию

Подключение люминесцентной лампы: описание работы и схема

Работа с ЭмПРА подразумевает свой процесс подключения люминесцентной лампы, соответственно, ЭПРА тоже отличается своими особенностями установки.

Дроссель можно назвать пережитком советского периода, сейчас он используется довольно редко, поскольку со временем перестает отвечать всем возложенным на него требованиям.

Однако, так как они все же имеют место быть в нашей жизни, рассмотрим в данной статье и их. Выше мы упоминали некоторые этапы работы этого устройства, теперь рассмотрим их подробно.

ЭмПРА осуществляет свою работу по стартерной схеме.

После того как мы подключаем электрическое питание, в стартере происходит процесс замыкания. Распространяется он на биметаллические электроды и отличается коротким исполнением. Ток поступает внутрь цепи, образованной электродом и стартером.

Там его ничто не ограничивает, кроме дросселя, создающего внутреннее сопротивление, и он возрастает в несколько раз, преобразуясь в рабочую форму.

Благодаря этому процессу электроды в люминесцентной лампе разогреваются очень быстро, а биметаллические контакты наоборот, остывают, при этом, происходит процесс размыкания всей цепи.

Дроссель, тем временем, запускает импульс, который и обеспечивает свет, излучаемый лампой. Пока лампа дает свет, стартер не участвует в работе, а значит, контакты его останутся разомкнутыми до тех пор, пока лампа не будет выключена.

Учтите некоторую особенность: если вы подключаете последовательно две лампы, не планируемые к работе в одноламповой схеме, то стартеры следует брать более высокой мощности, например, на 220 Вольт. Без соблюдения этого условия ваша установка не будет работать.

Совет

ЭПРА имеет в своем составе трансформатор и  выходной каскад, работающий на транзисторном снабжении.

Схем подключения его довольно много, но приятно отметить тот факт, что они наносятся производителем непосредственно на саму поверхность корпуса.

Схемы довольно понятны и работа с ними не принесет особых сложностей. Все нюансы указываются, как правило, там же. Кроме того, в интернете можно найти видеоуроки по подключению практически всех схем ЭПРА, а значит, успех предприятия обеспечен.

Важно только не упускать из внимания некоторый нюанс: схему подключения необходимо соблюсти на каждую лампу с обеих сторон.

Механизм действия может происходить по-разному, опять же, это зависит от специфики схемы.

К примеру, балласт осуществляет подогрев катодов лампы, прикладывая далее напряжение, которого достаточно, чтобы зажечь лампу. Напряжение выше, чем в сети. Могут встретиться и комбинированные варианты запуска.



Опытные пользователи люминесцентных ламп советуют обратить свое внимание в пользу именно ЭПРА.

Ознакомившись с перечнем положительных сторон, не трудно догадаться, почему выбор большинства обращен именно в его пользу.

В данной статье мы постарались собрать всю необходимую информацию о принципах подключения люминесцентных ламп.

Внимательно отнеситесь к рекомендациям производителей ламп

, которые вы решите купить. Ведь именно это обеспечит наиболее эффективную работу всей установки.

Источник: http://zavodsvetodiodov.ru/lampy/lyuminestsentnye/podklyuchenie-lyuminestsentnoj-lampy.html

Подключение люминесцентных ламп через ЭПРА | Каталог самоделок

Улучшить работу люминесцентного светильника, убрав надоедливое гудение, раздражающее моргание, и повысить яркость свечения вполне реально самому. Достаточно лишь заменить устаревшую схему дроссельного управления на современный электронный пускорегулирующий аппарат — ЭПРА.

Подключение балластной электроники возможно выполнить с любой люминесцентной трубкой, всех типов: Т12, Т8 и Т5, но к лампам Т12 оно будет не так рационально. Производство ламп Т12 сейчас сокращается, ввиду их низкой энергоэкономичности по сравнению с другими Т8 и Т5. За границей устаревшие Т12 фактически уже не выпускаются.

Обычный, купленный в магазине ЭПРА состоит из:

  • фильтра низкочастотных помех, работающего на вход и выход устройства;
  • выпрямителя переменного тока сетевой частоты;
  • инвертора;
  • элементов для коррекции коэффициента мощности;
  • фильтра постоянного тока;
  • дросселя, ограничивающего рабочий ток.

Светильник запускается электронным балластом в три этапа:

  1. Прогрев спиралей лампы для последующего плавного пуска, продлевающего срок службы.
  2. Подача импульса повышенного напряжения, необходимого для включения лампы.
  3. Стабилизация напряжения на рабочем уровне после зажигания светильника.

Подключение люминесцентных ламп через ЭПРА

Первое, что нужно сделать — разобрать светильник и вынуть из него старую начинку: дроссель, стартер, конденсаторы. В конечном итоге внутри должны остаться лампы дневного света, комплект проводов и новоустановленный электронный блок.

Для такой работы вам потребуется:

  • индикатор фазы;
  • отвертка с минусовым жалом;
  • отвертка крестовая;
  • кусачки;
  • канцелярский нож для зачистки проводов;
  • изоляционная лента;
  • саморезы, понадобятся для закрепления блока ЭПРА.

Покупать новый электронный блок следует исходя из мощности вашего светильника.

Подключение ЭПРА к люминесцентным лампам несложно сделать, имея минимальные познания в электрических схемах, и небольшой опыт работы с электропроводкой.

Перед тем как собирать схему, следует выбрать внутри светильника место для закрепления коробка ЭПРА, руководствуясь длиной проводов и удобством доступа к клеммам. Электронный блок быстро и надежно закрепляется к корпусу при помощи обычных саморезов в пробитые гвоздем отверстия. Теперь можно соединить пускорегулирующий аппарат с розетками ламп.

Подключая две люминесцентные лампы, без разницы последовательно или параллельно, убедитесь в том, что мощность электронного блока в два раза выше, чем у каждого источника света. Таким же принципом, важно руководствоваться при сборке трёх и более ламп в одном светильнике.

Собрав осветительный прибор, нужно бы его повесить на место. Перед подключением проводов, торчащих из стены, проверьте отсутствие напряжения на них индикатором.

Обратите внимание

Самый ответственный момент — первое включение прибора с ЭПРА. Если светильник, например, с двумя лампами был собран правильно, тогда: во-первых, лампы засветятся одновременно быстро, без разогрева как было раньше; во-вторых, свет перестанет заметно мерцать, пропадет низкочастотное гудение и повысится яркость света в целом.

Источник: https://volt-index.ru/muzhik-v-dome/svoimi-rukami/podklyuchenie-lyuminestsentnyih-lamp-cherez-epra.html

Принцип работы и схема подключения люминесцентных ламп

Февраль 2, 2014

47043 просмотров

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу.

Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон.

Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии.
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.

  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды.

    Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.

Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.

Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.


Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

Источник: http://jelektro.ru/vse-o-elektromontazhe/rabota_ljuminescentnyh_lamp.html

Баластник для люминесцентных ламп

Несмотря на широкое распространение светодиодных люстр и светильников, люминесцентные лампы не сдают свои позиции. Но такую лампу нельзя просто подключить к сети 220В. Для работы ей необходимо дополнительное устройство – баластник, или пускорегулирующий аппарат – ПРА.

Зачем нужен баластник в светильнике

Люминесцентная лампа – это запаянная стеклянная трубка. Внутри неё находятся инертный газ и небольшое количество паров ртути. В концах трубки находятся нити накала из вольфрамовых спиралей. Их нагрев вызывает эмиссию электронов и облегчает появление внутри трубки тлеющего разряда.

Свет, появляющийся при этом, бледно-синий, с большим количеством ультрафиолета, поэтому внутренние стенки трубки покрыты слоем люминофора, переизлучающего ультрафиолет в видимый свет.

Устройство лампы дневного света

Включение люминесцентных светильников

Схема включения люминесцентных ламп

Есть три основных вида пусковых устройств ЛДС.

С помощью стартёра и дросселя

При такой схеме включения нити накала соединяются последовательно со стартёром и баластником. Другое название электромагнитного баластника – дроссель. Это катушка индуктивности, ограничивающая ток через светильник.

При включении светильника стартёр подключает вольфрамовые спирали последовательно с дросселем. При их нагреве происходит эмиссия электронов, что облегчает появление между электродами разряда.

Периодически стартёр разрывает цепь и, если в это время происходит запуск лампочки, то напряжение между электродами падает, и он больше не включается.

Если же разряд не возникает, то стартёр снова замыкает цепь, и процесс зажигания повторяется.

Недостатки этой схемы:

  • длительное время запуска, особенно зимой в неотапливаемых помещениях;
  • дроссель гудит при работе;
  • свет мерцает с частотой 100Гц, что незаметно глазу, но может вызвать головную боль.

Электромагнитный баластник для люминесцентных ламп

Интересно. Для уменьшения мерцания в светильниках из двух ламп одна из них включается через конденсатор. При этом колебания света в них не совпадают, что благоприятно влияет на освещённость в помещении.

Умножитель напряжения

Для работы таких светильников раньше использовались самодельные умножители напряжения. Роль токоограничивающего баласта в этой схеме играют конденсаторы С3 и С4, а С1 и С2 создают высокое напряжение, необходимое для появления внутри трубки разряда.

https://www.youtube.com/watch?v=k9Jo5f3tnAA

Высоковольтный разряд зажигает ЛДС сразу, но мерцание такого светильника сильнее, чем в схеме со стартёром и дросселем.

Интересно. Умножитель напряжения позволяет использовать колбы с перегоревшими вольфрамовыми спиралями.

Электронный пускорегулирующий аппарат (ЭПРА)

Электронный балласт для люминесцентных ламп – это преобразователь напряжения, зажигающий и питающий лампу во время работы. Вариантов реализации таких устройств много, но собраны они по одной блок-схеме. В некоторых конструкциях добавляется регулировка яркости.

Запуск светильников с ЭПРА производится двумя способами:

  • Перед включением нити накала разогреваются, из-за чего запуск откладывается на 1-2 секунды. Яркость света может нарастать постепенно или сразу включаться на полную мощность;
  • Зажигание лампы производится при помощи колебательного контура, который входит в резонанс с колбой. При этом происходит постепенное повышение напряжения и разогрев нитей накала.

Такие устройства обладают рядом достоинств:

  • питание светильника осуществляется напряжением высокой частоты, что устраняет мерцание света;
  • компактность, что позволяет уменьшить габариты светильника;
  • быстрое, но плавное включение, продлевающее срок службы лампы;
  • отсутствие шума и нагрева при работе;
  • высокий КПД – до 95%;
  • встроенные защиты от короткого замыкания.

Электронные ПРА изготавливаются на 1, 2 или на 4 лампы.

Устройство электромагнитных ПРА

Какой вред от разбитых люминесцентных ламп

Схемы электронных баластников разных производителей отличаются друг от друга, но построены по одному принципу.

Блок-схема ЭПРА

Плата состоит из следующих элементов:

  • фильтра, защищающего схему от помех, создаваемых другим оборудованием;
  • выпрямителя, преобразующего переменное напряжение сети в постоянное, необходимое для работы схемы;
  • фильтра, сглаживающего пульсации напряжения после выпрямителя;
  • инвертора, питающего элементы платы;
  • самого электронного баластника.

На плате есть три пары выводов или клемм: одна – для подключения 220В и две – для нитей накала.

Принцип работы электронного баластника

Условно процесс поджига и работы люминесцентного светильника делится на три этапа:

  1. Разогрев нитей накала. Это необходимо для возникновения эмиссии свободных электронов, облегчающих появления разряда внутри колбы;
  2. Появление разряда между электродами. Это делается при помощи высоковольтного импульса;
  3. Стабилизация тлеющего разряда и дальнейшая работа светильника.

Эта последовательность обеспечивает плавный пуск, увеличивающий срок службы лампы и стабильную работу при низких температурах.

Принципиальная схема электронного балласта

На следующем рисунке изображена одна из распространённых принципиальных схем ЭПРА.

Принципиальная схема ЭПРА для люминесцентных ламп

Порядок её работы следующий:

  1. Диодный мост преобразовывает переменное напряжение сети 220В в постоянное пульсирующее. Конденсатор С2 сглаживает пульсации;
  2. Постоянное напряжение поступает на двухтактный полумостовой инвертор. Он собран на двух n-p-n транзистора, являющихся генераторами высокой частоты;
  3. Управляющий ВЧ сигнал в противофазе поступает на обмотки W1 и W2 трансформатора. Это трёхобмоточный трансформатор L1, намотанный на ферритовом магнитопроводе;
  4. Обмотка W3 подаёт высокое резонансное напряжение на нити накала. Оно создаёт ток, достаточный для нагрева спиралей и появления эмиссии электронов;
  5. Параллельно колбе включён конденсатор С4. При резонансе напряжения на нём возникает высокое напряжение, достаточное для появления разряда внутри трубки;
  6. Появившаяся дуга закорачивает ёмкость и прекращает резонанс напряжений. Дальнейшая работа обеспечивается токоограничивающими элементами L2 и С3.

Ремонт и замена ЭПРА

Неисправностей светильников два вида: сгоревшая лампа и неисправный блок. Лампочка подлежит замене, а неисправный электронный баластник можно отремонтировать или заменить новым.

Ремонт ЭПРА

Как проверить люминесцентную лампу 

Для того чтобы выполнить ремонт люминесцентных светильников и устранение неполадок в ЭПРА, необходимы начальные навыки ремонта электронной аппаратуры:

  1. Проверить и заменить предохранитель. В некоторых моделях для этого используется резистор номиналом 1-5 Ом. Вместо него припаивается кусочек тонкой проволоки;
  2. Производятся визуальный осмотр и проверка тестером элементов платы;
  3. Оценить стоимость неисправных деталей. При условии, что она ниже цены нового ЭПРА, произвести ремонт электронного балласта.

Замена электронного ПРА

Неисправный электронный дроссель меняется на новый. Это может быть готовая плата или схема из сгоревшей энергосберегающей лампочки. Используя такую плату, можно выполнить ремонт светильников с люминесцентными лампами или сделать люминесцентный светильник своими руками.

Принцип работы и запуск компактной люминесцентной лампы аналогичен обычным трубчатым ЛДС. Плата, которая находится внутри неё, без проблем управляет обычной лампой дневного света.

Важно! Мощность энергосберегающей лампы должна быть равна или больше мощности люминесцентного светильника.

Как проверить плату КЛЛ:

  1. Разобрать пластмассовый корпус. Он состоит из двух половин, соединённых защёлками. В щель просовывается нож и проводится по кругу;
  2. На плате находятся четыре штырька с намотанными проволочками, расположенные парами. Это нити накала. Они прозваниваются тестером;
  3. Если нити целые, то поломка в плате. Проводки разматываются, и колба отсоединяется для использования с платой от другой КЛЛ;
  4. Если одна из нитей накала оборвана, то плата отсоединяется и подключается вместо сгоревшего электронного баластника в люминесцентный светильник. При установке её необходимо изолировать от металлического корпуса и зафиксировать клеевым пистолетом или силиконовым герметиком.

Подключение ЭПРА от КЛЛ к лампе дневного света

Важно! Ремонт люминесцентных ламп выполняется при отключенном напряжении.

Использование электронных баластников в люминесцентных лампах увеличивает их срок службы и делает освещение более приятным. Это альтернатива замене таких светильников на КЛЛ.

Видео

Источник: https://amperof.ru/osveshenie/lampy/balastnik-dlya-lyuminestsentnyh-lamp.html

Электронный балласт для люминесцентных ламп

Источники освещения, называемые люминесцентными, в отличие от снабженных нитью накала аналогов, для работы нуждаются в пусковых устройствах, называемых балластом.

Что представляет собой балласт

Балласт для ЛДС (ламп дневного света) относится к категории пускорегулирующих устройств, которые используются в качестве ограничителя тока. Необходимость в них возникает, если электрической нагрузки недостаточно для эффективного ограничения потребляемого тока.

В качестве примера можно привести обычный источник света, относящийся к категории газоразрядных. Он представляет собой устройство, у которого отрицательное сопротивление.

В зависимости от реализации, балласт может представлять собой:

  • обычное сопротивление ;
  • емкость (обладающую реактивным сопротивлением), а также дроссель;
  • аналоговые и цифровые схемы.

Рассмотрим варианты реализации, получившие наибольшее распространение.

Виды балласта

Наибольшее распространение получили электромагнитная и электронная реализация балласта. Расскажем подробно о каждой из них.

Электромагнитная реализация

В этом варианте работа основывается на индуктивном сопротивлении дросселя (он подключается последовательно лампе).  Вторым необходимым элементом  является стартер, регулирующий процесс, необходимый для «зажигания».

Этот элемент представляет собой компактных размеров лампу, относящуюся к категории газоразрядных. Внутри ее колбы имеются электроды, изготовленные из биметалла (допускается один из них делать биметаллическим). Подключают стартер в параллель к лампе.

Ниже показаны два варианта ПРА.

Индуктивно-емкостная (1) и индуктивная реализация (2)

Работа осуществляется по следующему принципу:

  • при поступлении напряжения внутри лампы стартера производится разряд, что приводит к разогреву биметаллических электродов, в следствие чего они замыкаются;
  • замыкание электродов стартера приводит к возрастанию рабочего тока в несколько раз, поскольку его ограничивает лишь внутренне сопротивление катушки дросселя;
  • в следствие повышения уровня рабочего тока лампы, разогреваются ее электроды;
  • стартер остывает, и его электроды из биметалла размыкаются;
  • размыкание цепи стартером приводит к возникновению в катушке индуктивности импульса высокого напряжения, благодаря которому происходит разряд внутри колбы источника, что приводит к его «зажиганию».

После перехода  осветительного прибора в штатный режим работы, напряжение на нем и стартере будет меньше сетевого примерно в половину, что недостаточно для срабатывания последнего. То есть он будет находиться в разомкнутом состоянии и не оказывать влияние на дальнейшую работу осветительного устройства.

Такой тип балласта отличается простотой реализацией и низкой стоимостью. Но не следует забывать о том, что данный вариант пускорегулирующих устройств обладает рядом недостатков, таких как:

  • на «зажигание» уходит от одной до трех секунд, причем, в ходе эксплуатации это время будет неуклонно расти;
  • источники с электромагнитным балластом мерцают в процессе работы, что вызывает усталость глаз и может стать причиной головной боли;
  • расход электроэнергии у электромагнитных устройств значительно выше, чем у электронных аналогов;
  • в процессе работы дросселем издается характерный шум.

Эти и другие недостатки электромагнитных пусковых устройств для ЛДС привели к тому, что в настоящее время такие ПРА практически не применяются. Им на смену пришли «цифровые» и аналоговые ЭПРА.

Электронная реализация

Балласт электронного типа, по своей сути, является преобразователем напряжения, при помощи которого осуществляется питание ЛДС. Изображение такого устройства показано на картинке.

Фото электронного устройства для подключения двух ЛДС

Существует множество вариантов реализации электронных балластов. Можно представить характерную для многих устройств этого типа общую блок- схему, которая за небольшими исключениями, используется во  всех ЭПРА. Ее изображение представлено на рисунке.

Блок-схема типичной реализации ЭПРА

Многие производители добавляют в устройство блок коррекции коэффициента мощности, а также схему управления яркостью.

Существует два наиболее распространенных способа запуска источников, представляющих собой ЛДС, при помощи электронной реализации балласта:

  1. перед подачей на катоды ЛДС зажигающего потенциала их предварительно подвергают разогреванию. Благодаря высокой частоте поступающего напряжения, достигается две задачи: существенное увеличение КПД и устраняется мерцание. Заметим, что в зависимости от конструкции балласта, зажигание может быть моментальным или постепенным (то есть яркость источника будет постепенно нарастать);
  2. комбинированный метод, он характерен тем, что в процессе «зажигания» принимает участие колебательный контур, который должен войти в резонанс до того, как в колбе ЛДС произойдет разряд. Во время резонанса происходит повышение напряжения, поступающего на катоды, а рост тока обеспечивает их подогрев.

В большинстве случаев при комбинированном методе запуска схема реализована таким образом, что нить накала катода ЛДС (после последовательного подключения через емкость)  представляет собой часть контура.

Когда происходит разряд в газовой среде люминесцентного источника, это приводит к изменению параметров колебательного контура. В результате он выходит из состояния резонанса. Соответственно, происходит падение напряжения до штатного режима.

Пример схемы такого устройства показан на рисунке.

Схема простой электронной реализации баланса для ЛДС мощностью 18Вт

В данной схеме автогенератор построен на двух транзисторах. На ЛДС поступает питание с обмотки 1-1 (которая является повышающей у трансформатора Тр).

При этом такие элементы как емкость С4 и дроссель L1 являются последовательным колебательным контуром, с резонансной частотой, отличной от генерируемой автогенератором.

 Подобные схемы электронного балласта широко распространены во многих бюджетных настольных светильниках.

Видео: как сделать балласт для ламп

Важно

Говоря об электронном балласте, нельзя не упомянуть про компактные ЛДС, которые рассчитаны под стандартные патроны Е27 и Е14. В таких устройствах балласт встроен в общую конструкцию.

Установленный внутри источника электронный балласт

В качестве примера реализации ниже показана схема балласта энергосберегающей ЛДС Osram мощностью 21Вт.

Схема балласта для компактной ЛДС Osram

Необходимо заметить, что в связи с особенностями конструкции, к электронным элементам таких устройств предъявляются серьезные требования. В продукции неизвестных изготовителей, может использоваться более простая элементная база, что становится частой причиной выхода компактных ЛДС из строя.

Преимущества

Электронные устройства имеют много преимуществ перед электромагнитными ПРА, перечислим основные из них:

  • электронные пускорегулирующие устройства не вызывают мерцание ЛДС при ее работе и не создают постороннего шума;
  • схема на электронных элементах потребляет меньше энергии, легче весит и более компактна;
  • возможность реализации схемы, производящей «горячий старт», в этом случае происходит предварительный нагрев катодов ЛДС. Благодаря такому режиму включения срок службы источника значительно продлевается;
  • электронное пускорегулирующее устройство не нуждается в стартере, поскольку оно само отвечает за формирование необходимого для старта и работы уровней напряжения.

Источник: https://www.asutpp.ru/elektronnyj-ballast-dlya-lyuminescentnyx-lamp.html

Устройство электронного балласта для люминесцентных ламп

21.05.2017

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути.

На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи.

Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра.

Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета.

Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Совет

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы.

Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА).

Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.

Люминесцентная лампа, С1 и С2 – конденсаторы

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1.

После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1.

Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается.

При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.

Фото внутреннего устройства ЭПРАФото типового устройства ЭПРА

Ремонт ЭПРА

В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

Эпра для компактных лдс

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт.

Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8.

При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Простейший светильник из двух ламп

Источник: https://LampaGid.ru/vidy/lyuminestsentnye/elektronnyj-ballast

Ссылка на основную публикацию
Adblock
detector