Распределение нагрузки в трехфазной сети – советы электрика

Однофазная и трехфазная электрическая сеть

Загрузка…

+49

Электрический ток «доставляется» до потребителя по высоковольтным линиям электропередач. Электрический ток линий электропередач имеет высокое напряжение и напрямую не может использоваться потребителями. Для повседневного использования электрического тока доставленного ЛЭП его напряжение нужно понизить.

Для этого возле потребителей устанавливаются специальные трансформаторные подстанции. Трансформаторные подстанции понижают высоковольтное напряжение до номинальных значений пригодных для использования. Остановимся немного на подстанциях.

Трансформаторная подстанция

Трансформаторные подстанции это электроустановка, предназначенная для приема, преобразования и распределения электроэнергии от линий электропередач.

Состоят подстанции из понижающего трансформатора, распределительного устройства (РУ) и устройств управления.

По способу строительства и расположения подстанции подразделяются на пристроенные, встроенные, внутрецеховые. Для загорода наиболее распространены мачтовые и столбовые подстанции.

Обратите внимание

Основным элементом подстанции является понижающий трансформатор. Понижающие трансформаторы могут быть трехфазные и однофазные. Однофазные трансформаторы используются в комплексе с трехфазными трансформаторами и в основном в сельской местности.

Понижается напряжение в трансформаторах до номинального рабочего напряжения 380 или 220 вольт. Называются эти напряжения линейным и фазным соответственно. А питание потребителей называется соответственно трехфазным и однофазным.

Рассмотрим виды питания потребителей подробнее.

Однофазное электрическое питание

Однофазное электропитание запитывает потребителя от одной фазной линии и линии нулевого рабочего провода. Линии для однофазного питания называют однофазными электрическими сетями. Номинальное рабочее напряжение однофазных электрических сетей составляет 220 вольт.

Сами однофазные сети тоже можно разделить в зависимости от рабочих проводников.

Однофазная двухпроводная сеть

В однофазных двухпроводных сетях для электропитания используются два провода: фазного(L) и нулевого (N).Такая электрическая сеть не предусматривает заземление электроприборов. Двухпроводная электрическая сеть была да и остается самой распространенной в старом жилом фонде.

Если у вас дома проводка выполнена проводами с алюминиевыми жилами, скорее всего у вас двухпроводная электрическая сеть.

Пример схемы:однофазная двухпроводная сеть в квартире

Однофазная трехпроводная сеть

В однофазных трехпроводных сетях используются три провода: фазного(L),нулевого (N) и защитного, заземляющего.

Третий заземляющий провод предназначен для дополнительной защиты человека от поражений электрическим током.

Соединение заземляющего провода с корпусами электроприборов (заземление), позволяет отключать электропитание при замыкании фазного провода на корпус прибора (короткого фазного замыкания). Обозначается (PE)

Заземление защищает не только человека от поражений электротоком, но и спасает сами электроприборы от перегораний.

Пример схемы:однофазная трехпроводная сеть в квартире

Трехфазное электрическое питание

При трехфазном питании в электрощит квартиры или дома заводится три питающие фазы(L1;L2;L3) и нулевой рабочий проводник(N).Номинальное рабочее напряжение между любыми фазными проводами составляет 380 вольт.

Напряжение между любым фазным проводом и рабочим нулем составляет 220 вольт.

От электрощита проводка, распределяется по квартире или дому,согласно схеме электропроводки, обеспечивая 220 вольтовое или з80 вольтовое питание для электроприборов.

Важно

При планировании трехфазной сети важно правильно распределить нагрузку между тремя фазами. Неравномерное распределение нагрузки между фазами приведут к перекосу фаз, сильный перекос фаз приведет к аварийной ситуации вплоть до обгорания одной из фаз.

Распределить трехфазное питание по квартире или дому можно кабелями с четырьмя или пятью проводами

Трехфазная четырехпроводная электрическая сеть

При четырехпроводной электропроводки электропитание происходит от трех фазных проводов и рабочего нуля. От электрощитка или распределительной коробки проводка распределяется по розеткам и светильникам двумя проводами: каждым фазным и нулевым(L1-N;L2-N;L3-N).Напряжением 220 вольт. На схемах фазы могут обозначаться А, В, С.

Пример схемы: трехфазная четырехпроводная сеть в квартире

Трехфазная пятипроводная электрическая сеть

В трехфазной пятипроводной электрической сети «появляется» пятый заземляющий провод, выполняющий защитные функции. Обозначается (PE)

Важно! Во всех трехфазных сетях важно равномерное распределение нагрузки (потребляемой мощности) между фазами. Опредилять нагрузку сети при трехфазном питании нельзя по основному закону электротехники, зокону Ома. Для расчетов нужно учитывать коэффициент мощности(cosф) и коэффициент спроса (Кспроса). Обычно для квартир cosф=0,90-0,93;Кспроса=0,8.Значение 0,8 принимается, если потребителей более 5.

Пример схемы: трехфазная пятипроводная сеть в квартире

Источник: http://trigada.ucoz.com/publ/odnofaznaja_i_trekhfaznaja_ehlektricheskaja_set/1-1-0-484

Трехфазные и однофазные сети.Отличия и преимущества.Недостатки

В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети.

Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы.

Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.

Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – фаза и ноль. Возможен еще третий провод – заземление.

Если электрическая сеть трехфазная, то проводов будет 4 или 5. Три из них – это фазы, четвертый – ноль, и пятый – заземление. Также число фаз определяется и по количеству автоматических выключателей.

Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.

Отличия

Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.

  • В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
  • Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
  • Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
  • Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.

Преимущества 1-фазной сети

Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные автоматы, в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.

В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в щите на DIN рейке. А при установке дифференциального автомата экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина.

Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения.

Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается.

Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же.

Поэтому видно, что по мощности особой выгоды нет.

Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить кабель меньшего сечения, так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.

Большое значение имеет размер распределительного щита, который для 3-фазной сети будет иметь размеры заметно больше.

Совет

Это зависит от размера трехфазного счетчика, который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места.

Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока.

Ими могут быть электродвигатели, электрические котлы и другие мощные устройства, что является достоинством трехфазной сети.

Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома

В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:

  • Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
  • Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
  • Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
  • Необходим монтаж ограничителей напряжения в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.

Преимущества трехфазного питания для частных домов

  • Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
  • Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
  • Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение сечения кабеля ввода.
  • Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.

В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м2.

Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.

Читайте также:  Подключение 380 вольт в частном доме схема - советы электрика

Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektroobustrojstvo/jelektroprovodka/trekhfaznye-i-odnofaznye-seti/

Перекос фаз в трехфазной сети: что это такое, причины, последствия, защита

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью.

При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни.

Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В).

К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения.

В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения  ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность.

Первая считается основной, она определяет номинальное напряжение.

Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью.

Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже.

В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

Обратите внимание

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь.

Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ.

Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах.

Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью.

Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях.

К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии.

В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения – установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ)  напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Источник: https://www.asutpp.ru/perekos-faz-v-trehfaznoj-seti.html

Обрыв нуля и перекос фаз в трехфазной сети. Несимметрия напряжения

В наших статьях мы часто упоминали перекос фаз в трехфазной сети, о том, что это неприятная ситуация, приводящая к несимметрии напряжения и выходу из строя бытовых приборов.

Читатели обратили внимание на то, что в таких ситуациях защитная автоматика должна привести к отключению, или что-то можно было сделать своими руками, по крайней мере, большинство вопросов было сформулировано именно так.

На самом деле нет, поэтому мы решили в рамках этой статьи рассмотреть эту проблему – защиту от перекоса фаз.

Важно

Для начала возьмем обычные весы – с коромыслом, на которое положим шарик. Пока весы в равновесии шарик будет посередине. Но как только коромысло наклонится, шарик покатится под уклон.

У шарика тоже есть вес, поэтому, чем ближе он будет к краю коромысла, тем сложнее будет уравновесить эти весы. Проблема даже не в том, что вес шарика неизвестен, дело в том, что он двигается.

Примерно такая же проблема возникает, когда возникает перекос фаз в трехфазной сети, только при этом у весов будет не два плеча, а три, и куда покатится шарик непонятно.

В примере выше нет формул, но зато есть физика явления, поскольку даже в сети из двух фаз (или фазы и нейтрали) шарик это фактически потребляемая мощность . Если процесс не остановить, то шарик докатится до конца плеча весов, упадёт на чашку, и восстановить равновесие уже не получится, без вмешательства извне. Графически это можно представить вот так:

Зелёные линии – это равновесное состояние, красные показывают, как может измениться напряжение при перекосе фаз в трёхфазной сети , причём аварийной будет ситуация, когда значение отрезка «Фаза С точка N’» превысит 300 вольт. Крайним случаем будут ситуация, в которой точка N совпадёт с «Фаза А» или «Фаза В». Ещё раз смотрим на рисунок – перекос (отрезок N – N’, значение перекоса) в этой ситуации достигнет значения 220 В.

Читайте также:  Соединение проводов с помощью зажимов - советы электрика

При этом на отрезке «Фаза С – N’» значение напряжения вместо 220В составит 380 В. Для бытового прибора, рассчитанного на максимальные 250 В это катастрофа. Конечно, защитные автоматы должны будут в таких условиях обесточить линию, но это произойдёт только при наличии нагрузки в цепи.

Подведём промежуточный итог: перекос фаз в трёхфазной сети – это ненормальная ситуация, приводящая к изменениям параметров сети,  что может привести к авариям. Давайте посмотрим, откуда возникает такой перекос, и можно ли с ним бороться.

Причины появления перекоса фаз

Мы уже подробно разбирали трёхфазную сеть , осталось рассмотреть ещё один аспект – обрыв нуля в трехфазной сети , который является самой неприятной аварией.

В электросетях обрыв любого провода уже авария, которая ни к чему хорошему не приводит, но разрыв нейтрали это особенная неприятность.

Подавляющее количество квартир сегодня запитано от трёхфазных трансформаторов с глухозаземлённой нейтралью.

Совет

Помимо безопасности именно эта нейтраль позволяет безболезненно выравнивать небольшие перекосы фаз в трехфазной сети , подавая в квартиры более-менее 220В с заземлением.

Отключаем нейтраль (например, в стояке подъезда). Что мы получим в итоге этой ситуации? Для начала мы получим неуправляемый процесс перераспределения напряжения (который будет зависеть от загрузки каждой из фаз в разных квартирах). Наиболее сопротивляющаяся (загруженная) фаза возьмет на себя функцию «нейтрали». Напряжение в ней начнёт повышаться до значений в 380В.

Самая разгруженная фаза «просядет» до 127В или ниже. Результат будет прогнозируемый – выход из строя бытовой техники, перегоревшие лампы и прочие неприятности. Первыми выйдут из строя приборы с двигателями, потом с нагревательными элементами. Точные приборы тоже пострадают, но в меньшей степени. Современный телевизор вряд ли сгорит – выключится.

Но стиральная машинка не выживет точно.

Хуже всего придётся тем, кто окажется «в конце» этой линии, нагрузки превысят допустимые, притом, что не все автоматы «сообразят», что пора отключиться. Здесь крайне велики риски возгораний, как приборов, так и проводки.

Так что обрыв нуля в трехфазной сети – граничный случай, где полная несимметрия напряжений, отсутствие заземления = поражение током человека и гарантированная аварийная ситуация для электросети.

На фото как раз пример крайнего перекоса фаз на тестовом приборе:

Это, конечно, самая неприятная ситуация, но перепады напряжения в сети тоже не так безобидны, как кажется, особенно когда речь идёт о частном доме запитанном от трёх фаз.

Простое реле контроля напряжения, которое можно установить в квартире (или щитке), настроенное на принудительное отключение при изменениях именно напряжения, поможет уберечь от такой ситуации электропроводку и приборы.

Вернёмся к другим причинам перекосов фаз в трехфазной сети , точнее нас больше интересует бытовое приложение – то есть двухфазная сеть квартиры или частного дома, которая является СОСТАВНОЙ частью трехфазной сети. Не стоит забывать именно об этой детали – наши две фазы лишь часть большой энергосистемы.

Очередной пример. В нашей квартире 4 линии. Возьмем все приборы, удлинители и тройники и всё включим в одну розетку одной линии. А в розетку другой линии включим мультиметр и посмотрим на то, что будет с напряжением.

Что произойдёт? Да, автомат защиты прекратит это безобразие и отключит проблемную линию. Но перед этим мы увидим на мультиметре «свободной линии», что напряжение значительно превысит 220 В.

Как раз на этом принципе и построена защита от перекоса фаз – распределение нагрузки.

Обратите внимание

Ещё раз – перекос фаз возникает в ситуации, когда одна из фаз «перегружена» нагрузкой, а другая «свободна». Те самые весы – на одну чашку мы складываем приборы, включая их один за другим, а вторая чаша весов пустая. Естественно чаша с приборами перевесит пустую.

В реальности для разветвлённой энергосистемы процесс сложнее, поскольку в процессе участвуют промышленные электроприемники, системы уличного освещения, а также реактивная мощность.

Но смысл процесса именно таков – главная задача электрика, особенно доморощенного, такого как мы, правильно спрогнозировать нагрузки на разных участках электросети в квартире или доме, не допуская сосредоточения мощных потребителей в одной линии.

Способы защиты от перекоса фаз

Таким образом, для защиты от перекоса фаз используются следующие способы:

  1. Грамотное проектирование сети с прогнозом нагрузок. Это позволяет сбалансировать потребление так, что фазы участвующие в питание объекта нагружены равномерно.
  2. Использование приборов, позволяющих выравнивать нагрузку по разным фазам в автоматическом режиме, без участия оператора (для больших объектов).
  3. Изменение схемы потребления в уже существующих сетях, если были допущены ошибки проектирования сети или изначально не было возможности оценить мощность потребления на каждом участке.
  4. Изменение мощности потребителей в самых критических ситуациях.

Самым крайним способом исключения перекоса является перераспределение подачи энергии (переключение многоквартирного дома на более нагруженную линию), что позволяет проблемный объект «разбавить» большим количеством потребителей на всех трёх фазах.

Есть и другие способы, но они относятся к промышленному потреблению, мы рассматривать их не будем. И заметим, что грамотный проект (схема) не панацея, электросеть дома или квартиры не догма, она живёт вместе с жильцами и меняется так часто, что за несколько лет может отличаться от исходного состояния.

Главный вывод этой части статьи – прежде чем подключить электропроводку , продумайте, всё ли вы равномерно распределили по разным линиям. Если покупаете очень мощную стиральную машинку – сделайте для неё отдельную линию. Обратитесь к электрикам, которые помогут правильно эту линию включить.

В конечном итоге несимметрия напряжений во всём подъезде это суммарные перекосы всех потребителей.

Чем равномернее будет потреблять электричество Ваша квартира, тем меньше проблем будет на этаже, а чем больше будет таких этажей, тем стабильнее будет напряжение, тем дольше будут без проблем работать все электроприборы.

Заключение. Зачем в быту нужны знания о перекосах фаз?

Когда «фаза ушла» и случилась авария, сделать, конечно, ничего не получится, всё уже случится. Но, тем не менее, хотя бы общее представление о равновесии электросистемы должно быть, поскольку ряд признаков дадут понимание о том, что возможна аварийная ситуация.

Основной проблемой перекоса фаз в трехфазной сети является перепад напряжений. Токи тоже будут меняться, но напряжение – основной признак, который даст понимание, что, возникают проблемы.

Важно

Мы попробовали эти признаки расположить по наглядности , надеемся, это будет полезно, особенно если у Вас квартира в новостройке.

Обрыв нуля в трехфазной сети мы рассматривать не будем, признаков тут нет, обычно это авария, имеющая слишком короткий временной промежуток до появления последствий, но, тем не менее, главное – обесточить свою электросеть. И важно – вынуть вилки из розеток! Итак, что должно вызвать подозрения:

  • Мигание энергосберегающих ламп или ламп дневного света. Даже мерцание должно насторожить, поскольку эти источники света наиболее чувствительны к напряжению;
  • Мигание ламп накаливания, тусклый или наоборот яркий свет. Изменение яркости, которое видно визуально, хороший повод выключить вводной рубильник, чтобы выяснить причину. В этом случае изменения напряжения уже большие;
  • Признаки нештатной работы электроприборов. Это относится к приборам с встроенной защитой – утюги, электрочайники, микроволновка и т.д. Чайник отключается, микроволновка не стартует. Это говорит о том, что напряжение в сети ниже допустимого. Автоматы защиты пока не реагируют, но параметры сети явно изменились;
  • «Тёплый» выключатель, которым включается свет. Вы можете и не увидеть мигания, но, выключая свет, почувствовали, что выключатель теплее стены. Это опасный признак;
  • При включении вилки в розетку видно (слышно) искрение. Не втыкайте вилку. Это уже совсем плохой признак. Возможно тот самый обрыв нуля в трехфазной сети ;
  • Спонтанные отключения автоматов защиты, при отсутствии перегрузок и понимании, что нагрузка в квартире (доме) никак не изменилась. Выражается это при включении освещения или приборов включенных в сеть (тот же чайник). Как правило, в таких сетях хорошо сделана защита, приборы уцелеют, но меры предосторожности не помешают;
  • Искрение, звуки щелчков в щитке и подобные признаки при входе в квартиру должны насторожить больше всего. В таких ситуациях не стоит пытаться включить лампочку – лучше всего узнать у соседей, что у них происходит и вызывать аварийную бригаду энергетиков. То же самое стоит делать, если на площадке в подъезде лампочка сильно мигает или вообще перегорела (особенно с разрушением колбы). Это признаки аварийной ситуации всей электросети, а не только у Вас в квартире.

И, конечно, стоит подумать над тем, чтобы установить прибор, который может в постоянном режиме показывать напряжение: реле, индикатор или другой. Некоторые современные счётчики снабжены такой опцией, что позволяет визуально контролировать входное напряжение.

Такого рода индикатор незаменим, поскольку не все умеют использовать измерительные приборы, да и сложно постоянно вольтметром или мультиметром измерять параметры.

Отличный выход – стабилизатор напряжения для частного дома (в зоне ответственного оборудования), который показывает входное напряжение и то, которое он даёт на приборы.

Ну и никто не отменял здравый смысл, а также понимание того, что приборы никогда не начнут вести себя «как-то не так», особенно все сразу.

Если это происходит – начинайте принимать меры до того, как перекос фаз приведёт к прямым убыткам.

Помните, что энергетики, конечно, несут ответственность за параметры сети, но она ограничена и границами и множеством оговорок, так что в случае такого рода аварий, рассчитывать на компенсацию не приходится.

Источник: http://obelektrike.ru/posts/obryv-nulja-i-perekos-faz/

Трехфазные и однофазные сети

Трехфазная сеть — это способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Те провода, по которым ток идет, называются фазными, а по которому возвращается — нулевым.

Трехфазная цепь состоит из трех фазных проводов и одного нулевого. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120°.  Передача переменного тока происходит именно при помощи трехфазных сетей.

Это выгодно с экономической точки — не нужны еще два нулевых провода. Подходя к потребителю, ток распределяется на три фазы, и каждой из них дается по нулевому проводу. Так он попадает в квартиры и дома.

Читайте также:  Как выбрать сечение провода - советы электрика

Хотя в частном секторе нередко трехфазная сеть заводится прямо в дом.

Любая однофазная электрическая цепь состоит из двух проводов. По одному проводу ток поступает к потребителю, а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.

Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере.

В случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление.

По этому проводу избыток электричества в буквальном смысле слова уходит в землю.

От трансформаторной понижающей подстанции до ВРУ (Вводно-распределительное устройство, где происходит прием, учет и распределение электрической энергии) приходит трехфазная сеть пятижильным проводом, а в наши квартиры приходит уже трехжильный.

Совет

На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри ВРУ выполняется схема разъединения трехфазной цепи на однофазные.

К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель. В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет.

Относительно земли у него нет потенциала в отличие от фа-
зного провода, в котором напряжение (фазное напряжение между фазой и нулем) равно 220 В. Между фазами (так называемое линейное напряжение между любыми из трех фаз) напряжение 380 В.

Фазные провода в трехфазной сети обычно маркируются так: фаза А — желтый, фаза B — зеленый, фаза C — красный.

В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи.

Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. Понятно, что нагрузка на 2 эти фазы неодинакова, происходит перекос фаз и ни о каком нейтральном проводнике речи уже не идет.

На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше. Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.

На данный момент ситуация усугубляется еще тем, что большинство домашних электроприборов являются импульсными. По этой причине возникают дополнительные импульсные токи, которые не компенсируются в средней точке.

Обратите внимание

Эти импульсные приборы вместе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике может оказаться ток равный или превышающий ток одной из фаз.

Однако нейтраль такого же сечения, что и фазный провод, а нагрузка больше.

Вот почему в последнее время все чаще возникает явление, называемое «отгоранием» или обрывом нулевого проводника — нейтральный проводник просто не справляется с нагрузкой, перегревается и отгорает.

Для защиты от такой неприятности надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно).

Поэтому оптимальным решением я считаю использование реле контроля напряжения, которое отключит питание квартиры в случае выхода напряжения за допустимые пределы. Тем самым оно защитит ваши электроприборы.

Реле контроля напряжения

Какую сеть лучше провести в частном доме?

Если у вас в доме есть трехфазное оборудование, то ответ очевиден. Также к плюсам трехфазной сети можно отнести то, что на ввод можно использовать кабель меньшего сечения, чем при однофазной, так как в трехфазной сети мощность распределяется по трем фазам, благодаря чему на каждую фазу приходится меньшая нагрузка.

К минусам трехфазного ввода можно отнести более высокие расходы на покупку трехфазных автоматов, УЗО, счетчика, габариты распределительного щита будут больше чем однофазного, а также при трехфазной сети необходимо грамотно распределить нагрузку по фазам во избежании перекоса фаз — несимметрии токов и напряжений.

Что касается мощности, то здесь в основном все зависит от максимально разрешенной мощности, указанной в технических условиях на подключение.

Если у вас на даче небольшой летний домик или бытовка и разрешенная мощность предположим 5квт, то вполне достаточно будет однофазного ввода, а вот при наличии большого загородного дома со множеством потребителей, или своей мастерской с трехфазными потребителями, то здесь конечно уже не обойтись без трехфазной сети.

Источник: http://electric-blogger.ru/stati/trexfaznye-i-odnofaznye-seti.html

Перекос фаз

Главная > Теория > Перекос фаз

Наиболее распространенной системой передачи электроэнергии является трехфазная, образованная тремя переменными напряжениями, различающимися по фазе на 120°. Несбалансированность напряжений влияет на качество электроэнергии.

Перекос напряжений на приборе

Что называется перекосом фаз

Чтобы понять, что такое перекос фаз, нужно обратиться к построению векторов напряжений трехфазной системы.

Вектора линейных напряжений образуют равнобедренный треугольник, а фазные напряжения, выходящие из нулевой точки, напоминают симметричную звезду.

Все три фазных напряжения должны быть равны по величине, а углы между ними составлять 120°. Отклонения от этого состояния представляют собой перекос фаз в трехфазной сети.

В схемах трехфазного тока, соединенных по типу «Y», присутствует N-проводник, с помощью которого относительно балансируются показатели напряжения. Когда происходит нарушение его целостности, N-проводником становится один из фазных проводов. Напряжение этой фазы возрастает до 0,4 кВ, что вызывает выход из строя электроприборов, подключенных к ней.

Графическое представление перекоса фаз

Напряжение обратной последовательности появляется при несимметрии фаз трехфазного питания, например, у двигателя или трансформатора. Величины и углы этого напряжения не совпадают с исходным напряжением системы. Степень асимметрии у двигателя зависит от его типа, размера и нагрузки.

Чтобы обнаружить асимметрию в системе, нужно измерить и сравнить друг с другом все три однофазные напряжения (между N-проводником и фазами).

Для расчета дисбаланса напряжений применяют следующую формулу:

Низшее напряжение / Высшее напряжение х 100%.

ПУЭ и ГОСТы устанавливают нормы допустимого перекоса фаз, исходя из показателей токов и напряжений, которые не должны превышаться:

  • отношение между фазными токами (наибольшим и наименьшим) на щитках распределения – 30 %, на вводно-распределительных устройствах – 15%;
  • асимметрия напряжений обратной последовательности – 2%, нулевой последовательности – 4%.

От чего зависит симметрия напряжений

Симметрия напряжения системы между распредсетями и потребителями электроэнергии зависит от:

  • импеданса силовой цепи;
  • напряжений на выводах генератора;
  • тока, протекающего через приемники, сети передачи и распределения (распределение мощности в системе).

Напряжения на выходных контактах генераторов, как правило, симметричны из-за конструктивных особенностей и эксплуатационных характеристик синхронных машин, применяемых для выработки электроэнергии на электрических станциях. В случаях задействования асинхронных агрегатов, например, в ветряных установках, также получается симметричное трехфазное напряжение.

В локальных сетях генерации и распределения энергии, созданных со стороны потребителя, могут наблюдаться отличающиеся процессы. Многие из этих небольших блоков, например, фотоэлектрические элементы, подключенные к низковольтной сети силовой электроникой, имеют относительно высокий импеданс, что вызывает усиливающийся дисбаланс напряжения.

Сопротивление части энергосистемы неодинаково для отдельных фаз. Геометрическое расположение линий с асимметрией относительно земли вызывает различия и в их электрических параметрах. В целом, эти отклонения очень малы и могут быть незначительными при использовании превентивных мер.

Асимметрия на стороне нагрузки

Наиболее распространенными являются случаи перекоса фаз на стороне нагрузки. Приемниками, вызывающими асимметрию в сети, являются:

  • блоки однофазных нагрузок, подключенных к трехфазной, например, индукционные печи, сварочный трансформатор;
  • трехфазные приемники, работающие с периодической асимметрией (дуговые печи);
  • множество неравномерно распределенных однофазных нагрузок, включенных между фазными и нейтральными проводниками, например, у муниципальных потребителей в низковольтных сетях.

Асимметрия нагрузок по фазам

Важно! Неисправность системы также является причиной перекоса фаз. Распространенными случаями являются замыкания на землю, неисправности проводов. Такие дефекты вызывают падения напряжения в одной-двух фазах, что может способствовать перенапряжению в других фазах.

Последствия перекоса фаз:

  1. Снижение эксплуатационного срока электрооборудования;
  2. Увеличение энергопотребления;
  3. Нарушения в работе двигателей и генераторов, снижение их мощности;
  4. Возможность повреждения электроприборов и устройств.

Защитные методы

Существует несколько способов защиты низковольтных потребительских сетей от перекоса фазных напряжений. Первым способом является расчет нагрузочных токов и конструктивное планирование их с целью обеспечения равномерности распределения мощностей.

Нагрузки со стороны низкого напряжения, такие как бытовые электроприборы или осветительные сети, обычно однофазные, что затрудняет гарантию симметрии.

При планировании электрической сети, содержащей такие типы электроприемников, отдельные схемы должны быть равномерно распределены между тремя фазами, например, одна фаза на этаж.

Важно

Мерой по защите от перекоса фаз может служить и изменение рабочих параметров нагрузок в существующих сетях.

Важно! Несмотря на распределение, баланс нагрузок в центральном трансформаторе варьируется из-за изменения статистических циклов работы оборудования.

Другие защитные методы:

  1. Применение релейной аппаратуры, фиксирующей напряжение и автоматически срабатывающей на отключение при появлении асимметрии выше заданного показателя. При выравнивании значений напряжения подается сигнал на обратное включение;

Реле контроля напряжения

  1. Переустройство схемы фазных соединений при значительных изменениях характера нагрузки;
  2. Применение стабилизаторов напряжения, трансформаторов для симметрирования нагрузочных токов и другого оборудования.

Стабилизатор

Бытовое применение стабилизаторов предназначено для обеспечения неизменных показателей напряжения одной питающей фазы. Но они не влияют на перекос фаз в трехфазной сети. В промышленности применяют трехфазные устройства.

Стабилизатор напряжения

Основная функция аппарата – обеспечить выходное напряжение, питающее подсоединенные к нему устройства. Большинство стабилизаторов имеет электронные фильтры, целью которых является подавление шума и пикового напряжения. Стабилизатор защищает как от пониженного напряжения, так и от перенапряжения.

Симметрирующий трансформатор

Эти трехфазные устройства подключаются для питания потребительских электросетей и обладают рядом полезных функций:

  • симметрируют нагрузку в питающей сети, независимо от фазных токов электроприемников;
  • при подсоединении электрооборудования с мощным потреблением сглаживают просадку напряжения;
  • уменьшают потери электроэнергии.

Симметрирующие трансформаторы возможно использовать, как для питания трехфазной нагрузки, так и для создания однофазных схемных конфигураций. В случае наличия трехфазной системы без нейтрального проводника устройство преобразует ее в четырехпроводную систему с N-проводом.

Альтернативные способы устранения фазных перекосов – использование конденсаторных батарей с треугольным соединением, включение специальных трансформаторов с дополнительной нагрузкой в виде конденсатора и индуктивности и другие.

Видео

Источник: https://elquanta.ru/teoriya/perekos-faz.html

Ссылка на основную публикацию
Adblock
detector