Работа трехфазного асинхронного двигателя от однофазной сети – советы электрика

Подключение трехфазного двигателя к однофазной электрической сети

remontoni.guru > Электрика > Подключение трехфазного двигателя к однофазной электрической сети

У домашнего мастера может появиться необходимость подключить асинхронный электродвигатель к обычной электрической сети.

Обратите внимание

Но в бытовой электрической сети имеется всего одна фаза, а для питания асинхронного двигателя нужна трехфазная сеть.

Чтобы выйти из данной ситуации, существует несколько вариантов подключения включение трехфазного двигателя в однофазную сеть как с использованием конденсаторов, так и без них.

Схемы подключения и принцип работы трехфазного асинхронного двигателя

Существуют две стандартные схемы подключения асинхронного электродвигателя, это «треугольник» и «звезда». Эти два способа подключения имеют свои особенности:

  • При включении электродвигателя по схеме «звезда» токи в обмотках будут сравнительно небольшими, что позволяет ему выдерживать длительные нагрузки. При этом мотор выдаёт не очень большой крутящий момент;
  • При включении электродвигателя по схеме «треугольник» токи в обмотках будут максимальными, поэтому он выдаёт большой крутящий момент на валу и его можно использовать под большой нагрузкой. Однако для работы на протяжении длительного времени ему требуется хорошее охлаждение.

Асинхронный электромотор имеет три обмотки, на каждую из которых, в трехфазной сети, подаётся отдельная фаза. В трехфазной сети фазы смещены на 120 градусов, то есть за оборот на треть окружности отвечает отдельная фаза. Благодаря этому магнитное поле равномерно перемещается по кругу, и вращение электродвигателя происходит плавно, без пульсаций.

При подключении такого электродвигателя к обычной бытовой электрической сети в одной обмотке появится пульсирующее электромагнитное поле, которое не сможет создать крутящий момент. Чтобы трехфазный электродвигатель смог работать нужно сместить фазы на его обмотках.

Конденсаторные схемы подключения трехфазного двигателя в однофазную сеть

Чтобы обеспечить необходимый для пуска мотора сдвиг фаз можно использовать конденсатор. Такая схема подключения трехфазного электромотора является самой распространённой из-за своей простоты.

Расчёт ёмкости

В зависимости от того по какой схеме подключён ваш электродвигатель «звезда» или «треугольник» оптимальная ёмкость будет разной.

При подключении по схеме «звезда» ёмкость рассчитывается по формуле: C=2800*I/U;

Если двигатель включён по схеме «треугольник» ёмкость определяется по такой формуле: C=4800*I/U.

Где U – напряжение двухфазной сети в вольтах.

I – штатный ток фазы.

Штатный ток фазы можно измерить при помощи токоизмерительных клещей или найти в технических характеристиках вашего мотора.

Ток фазы можно рассчитать по формуле: I=P/(1.73*U*η*cos(ф)).

Где P – мощность электромотора кВт;

η – коэффициент полезного действия асинхронного двигателя;

cos(ф) – коэффициент мощности. Его можно найти на табличке двигателя или в его паспорте.

На практике иногда используется упрощённая формула для расчёта ёмкости при подключении по схеме «треугольник»: С=66*Р, где Р – мощность электромотора в киловаттах. Хотя расчёты по данной формуле могут давать небольшую погрешность, но это не сильно влияет на работу двигателя.

Если пуск двигателя осуществляется под нагрузкой необходимо на время запуска электродвигателя подключить пусковую ёмкость. Его ёмкость должна быть в 2,5 – 3 раза больше ёмкости рабочего.

Определить, правильно ли вы определили ёмкость можно по результатам работы электромотора. В том случае, если ёмкость больше оптимальной температура мотора будет слишком высокой, и он может выйти из строя. При низкой ёмкости электродвигатель не сможет развить достаточную мощность.

Важно

Можно подбирать конденсаторы, включив сначала небольшую ёмкость и увеличивая их ёмкость, пока ваш электродвигатель не начнёт развивать требуемую мощность. При таком способе подбора ёмкости будет нелишним контролировать ток в обмотках при помощи измерительных клещей.

Измерение тока нужно проводить в рабочем режиме работы мотора.

Выбор конденсаторов

Обычно, для подключения асинхронного электромотора к однофазной сети используют металлобумажные конденсаторы МБГП, МПГО, МБГО или КБП. Единственным их недостатком являются то, что они имеют сравнительно большие габариты при небольшой ёмкости.

Сейчас можно купить металлизированные полипропиленовые конденсаторы модели СВВ, которые при большой ёмкости имеют маленькие размеры. Этот тип имеет высокую надёжность и хорошо зарекомендовал себя в работе.

Помимо ёмкости, следует также обратить внимание на напряжение, на которое они рассчитаны. Покупать конденсатор, рассчитанный на большое напряжение, не стоит из-за их высокой стоимости и больших габаритов.

Если подключить конденсаторы, рассчитанные на напряжение меньше действующего, то они очень быстро выйдут из строя. Максимальное напряжение должно быть в 1,5 – 2 раза выше чем напряжение электрической сети.

Например, для бытовой сети 220 вольт напряжение конденсатора должно быть больше 1,5*220= 330 вольт, а лучше выбирать конденсаторы, рассчитанные на 400 – 450 вольт.

Если вы не можете найти конденсатор нужной ёмкости, то можете соединить параллельно несколько конденсаторов меньшей ёмкости. При параллельном соединении ёмкости складываются. Например, чтобы получить ёмкость 20 микрофарад нужно соединить параллельно два конденсатора по 10 микрофарад.

Бесконденсаторные схемы подключения трехфазного двигателя в однофазную сеть

Существует несколько схем, как подключить трехфазный двигатель в однофазной сети без конденсаторов. При использовании таких схем можно сэкономить на покупке достаточно дорогих конденсаторов, однако они достаточно сложны и намного менее популярны по сравнению с ёмкостными схемами.

Обычно в бесконденсаторных схемах используются симисторы и они требуют тщательной отладки и подгонки.

Одна из таких схем была напечатана в журнале «Сигнал» номер 4 за 1999 год. В этой схеме симистор служит для сдвига тока по фазе, в одной из обмоток, на величину от 50 до 70 градусов и тем самым обеспечивает необходимых для пуска крутящий момент. Для сдвига фаз имеется RC-цепочка. Подбирая сопротивление в данной цепочке, можно получить напряжение, сдвинутое на требуемый угол.

Динистор играет роль ключевого элемента в данной схеме. Когда напряжение на фазосдвигающей цепочке достигнет требуемого уровня, динистор подключит RC цепочку к выводу симистора и включит его. Таким образом, напряжение, сдвинутое по фазе на нужный угол, поступит на электродвигатель. При подключении электромотор в данной схеме включён по схеме «треугольник».

Заключительные моменты

Что ещё следует знать о том, как подключить трехфазный двигатель в однофазную сеть:

  • Подключить трехфазный электромотор к однофазной сети достаточно и многие инженеры и домашние умельцы предлагают свои новаторские схемы;
  • Несмотря на наличие множества разнообразных схем, они не могут обеспечить стопроцентное использование мощности мотора из-за потерь электроэнергии при преобразовании напряжения. Трехфазный электродвигатель в однофазной сети работает с большими затратами электроэнергии и пониженным коэффициентом полезного действия;
  • Мощность трехфазного электромотора при подключении к однофазной сети снижается до 70-80 % от номинальной;
  • Использование оборудования с таким приводом на протяжении длительного времени не экономически невыгодна из-за больших затрат энергии;
  • Этот способ можно применять для подключения оборудования на короткий промежуток времени;
  • Чтобы заставить электромотор вращаться в обратную сторону нужно подключить пусковой конденсатор к другой обмотке;
  • Подключать асинхронный электромотор следует к трехфазной сети. Если такой возможности нет, нужно купить инверторный преобразователь. Хотя такой преобразователь стоит достаточно дорого, при длительной эксплуатации он окупит себя.
  • Для бытовых нужд лучше подойдёт однофазный мотор. Он дешевле в работе и способен справиться с возложенными на него обязанностями.

Источник: https://remontoni.guru/elektrika/podklyuchenie-trehfaznogo-dvigatelya-k-odnofaznoj-elektricheskoj-seti.html

Включение трехфазного асинхронного электродвигателя в однофазную сеть

В условиях небольших электроремонтных цехов, мастерских или в домах сельских жителей часто необходимо использовать трехфазные асинхронные электродвигатели для привода различных механизмов (станков, шлифовальных кругов, циркулярных пил и т. д.), когда нет трехфазной сети.

Следует иметь в виду, что работа трехфазного электродвигателя от однофазной сети нежелательна, так как при этом на одну треть снижается его момент и возникает асимметрия в питающей сети. Такое вынужденное решение можно принять только до приобретения однофазного электродвигателя или подводки сети трехфазного тока.

При питании трехфазного электродвигателя от однофазной сети обмотку третьей фазы включают через фазосдвигающий конденсатор, как показано на рисунке 32. Чтобы двигатель (особенно под нагрузкой) пускался нормально, кроме рабочего конденсатора Сp предусмотрен пусковой Сп, который сразу же после пуска отключают от сети выключателем S2.

Совет

Рис. 32. Схемы включения трехфазного асинхронного электродвигателя в однофазную сеть при соединении обмоток звездой (а) и треугольником (б)

Если обмотка статора соединена по схеме, показанной на рисунке 32, а, то для трехфазного электродвигателя емкость рабочего конденсатора, мкФ:

а если по схеме, приведенной на рисунке 32, б, то

При известной мощности электродвигателя (указана в паспорте или на щитке) фазный номинальный ток, А:

Емкость пускового конденсатора Сп должна быть в два-три раза больше емкости рабочего Ср. При пуске вхолостую пусковой кондецсатор Сп можно не применять. Рабочее напряжение конденсаторов

должно быть не менее чем в два раза больше номинального напряжения сети. Конденсаторы Ср выбирают серий МБГО, МБГП, МБГЧ, КБГ-МН, БГТ и др. Так как пусковой конденсатор Сп включается лишь на несколько секунд, то можно использовать более дешевые электролитические элементы, например типа ЭП.

Реверсирование электродвигателя легко выполнить с помощью переключателя S1. Если это не требуется, то переключатель не нужен.

Эксплуатация электродвигателей с конденсаторным пуском имеет некоторые особенности. Так, при работе вхолостую или с недогрузкой по обмотке, соединенной последовательно с конденсатором, протекает ток, на 20…

40 % превышающий номинальный. В этом случае необходимо соответственно уменьшить емкость рабочего конденсатора Ср.

Обратите внимание

Следует также иметь в виду, что при таком включении мощность, развиваемая электродвигателем, не превосходит 65 % номинальной.

Источник: http://delo-elektrika.ru/sovet-elektriku/21024.html

Подключение трехфазного двигателя

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование.

В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле.

Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной.

В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов.

Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами.

Читайте также:  Как выбрать сечение провода по мощности - советы электрика

То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой.

Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток.

Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним.

Важно

Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет.

Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК.

Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Подключение трехфазного двигателя к однофазной сети

Довольно часто возникает необходимость в нестандартном подключении какого-либо электроприбора, применительно к конкретным условиям. Среди возможных вариантов следует выделить подключение трехфазного двигателя к однофазной сети, широко применяемое в бытовых условиях. Данная схема вполне оправдывает себя, несмотря на некоторое снижение мощности подключаемого оборудования.

Подключение трехфазного двигателя к однофазной сети через конденсатор

Подключить трехфазный двигатель к сети с напряжением 220 вольт довольно просто. В стандартной ситуации, в каждой фазе имеется собственная синусоида. Между ними существует фазовый сдвиг, составляющий 120 градусов. За счет этого обеспечивается плавное вращение в статоре электромагнитного поля.

Каждая волна обладает амплитудой 220 вольт, что и дает возможность подключения трехфазного двигателя к обычной сети.

Получение трех синусоид из одной фазы происходит с помощью обычного конденсатора, при условии соединения обмоток двигателя треугольником.

Объединенные в единое кольцо, они позволяют получать сдвиг по фазе в 45 и 90 градусов, вполне достаточный для не слишком активной работы вала.

Применение конденсатора позволяет достичь мощности двигателя при одной фазе примерно 50-60% от этого же показателя для трех фаз. Однако данная схема подходит не ко всем электродвигателям, поэтому следует выбирать наиболее подходящую модель, например, серии АПН, АО, А, АО2 и другие.

Одним из условий использования конденсатора является необходимость изменения его емкости в соответствии с количеством оборотов.

Совет

Практическое выполнение этого условия представляет серьезную проблему, поэтому управление двигателем выполняется в двухступенчатом варианте.

Во время запуска подключается сразу два конденсатора, один из которых отключается после разгона. Остается только рабочий, продолжающий функционировать.

Как подобрать конденсатор для трехфазного двигателя

Пусковой конденсатор должен примерно в 2-2,5 раза превышать емкость рабочего конденсатора. Расчетное напряжение этих устройств обычно в 1,5 раза превышает напряжение сети.

Для сетей 220 вольт наилучшим вариантом будут конденсаторы МБПГ, МБГО, МБГЧ, рабочее напряжение которых составляет 500 вольт и более.

Если конденсаторы включаются лишь на короткое время, возможно применение в схеме электролитических устройств, таких как КЭ-2, К50-3, ЭГЦ-М с минимальным напряжением 450 вольт.

Между собой конденсаторы соединяются последовательно, через минусовые выводы. Далее в схему добавляется резистор, сопротивлением 200-300 Ом, убирающий оставшийся электрический заряд с конденсаторов.

Расчёт конденсатора для трёхфазного двигателя

Нормальная работа трехфазного электродвигателя с пуском через конденсатор зависит от ряда условий. Одним из них является изменение емкости устройства в соответствии с числом оборотов двигателя. Это достигается за счет двухступенчатого управления, состоящего из двух конденсаторов – пускового и рабочего.

Во время пуска происходит замыкание контактов, после чего нажимается кнопка разгона. После того как набрано достаточное количество оборотов, кнопку следует отпустить.

Рассчитать емкость рабочего конденсатора можно по следующей формуле: Ср = 4800х I/U, где Ср является емкостью устройства в мкФ, I – сила тока, потребляемого двигателем в амперах, U – напряжение электрической сети в вольтах.

Обратите внимание

Данная формула подходит при соединении обмоток двигателя методом треугольника. Если же обмотки двигателя соединены звездой, применяется формула Ср = 2800х I/U.

Таким образом, подключение трехфазного двигателя к однофазной сети имеет свои особенности. Например, емкость пускового и рабочего конденсатора должна соответствовать мощности подключаемого двигателя.

Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор.

Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнитных потоков.

За счет этих потоков, ротор двигателя начинает вращаться.

Соединение звездой и треугольником обмоток электродвигателя

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда.

Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью.

Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя.

Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение.

При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнитные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Важно

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети.

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

Источник: http://pkdemo.ru/podklyuchenie-trexfaznogo-dvigatelya-k-trexfaznoj-seti.html

ТРЁХФАЗНЫЙ ДВИГАТЕЛЬ В ОДНОФАЗНОЙ СЕТИ

   При всем современном многообразии выбора бытового электроинструмента, по прежнему существует потребность в применении более мощных асинхронных электродвигателей.

Предпосылок к этому немало – применяемые в качестве двигателей электроинструмента коллекторные машины не превосходят по мощности потолок в 1 – 1,5 кВт (дальнейшее увеличение по мощности приводит к увеличению по массагабаритным показателям), а ведь иногда требуется привод более мощный (самодельные циркулярные или ленточные пилы, электрофуганки с шириной прохода 50 и более сантиметров и т.д). Все эти инструменты приводятся в движение как правило при помощи трехфазных электродвигателей. К сожалению, трехфазная сеть в быту – явление крайне редкое, поэтому для их питания от обычной электрической сети самодельщики применяют: фазосдвигающий конденсатор; тринисторные фазосдвигающие устройства; другие емкостные и индукционно-емкостные фазосдвигающие схемы. Среди различных способов запуска асинхронных электродвигателей с короткозамкнутым ротором, наиболее простым является способ подключения одной из обмоток двигателя через фазосдвигающий конденсатор.

   Для работы двигателя с конденсаторным пуском необходимо, чтобы емкость конденсатора менялась в зависимости от числа оборотов. На практике это условие практически невыполнимо, поэтому при пуске двигателя подключают два конденсатора (Ср – рабочий конденсатор; Сп – пусковой конденсатор). 

   Такую схему подключения выбирают только втом случае, если на маркировке двигателя указано напряжение питания 220/380v.

   Работает схема так: после включения пакетного выключателя П1, необходимо сразу нажать пусковую кнопку ''Разгон''. После того как двигатель наберет обороты кнопку отпускают.

Читайте также:  Как проверить трехфазный двигатель мультиметром - советы электрика

   Реверсирование двигателя осуществляется путем переключения фаз на его обмотке посредством тумблера SA1. Для разряда конденсаторов используется сопротивление R1. Емкость рабочего конденсатора можно расчитать по следующим формулам.

Для схемы подключения ''треугольник'': Ср=4800*(I/U) где Ср – емкость конденсатора в микрофарадах, I – ток потребления электродвигателя в амперах, U – напряжение питающей сети.

Совет

Для схемы подключения ''звезда'': Ср=2800*(I/U) где Ср – емкость конденсатора в микрофарадах, I – ток потребления двигателя в амперах, U – напряжение питающей сети. Емкость пускового конденсатора Сп выбирают в 2-2,5 раза большей емкости рабочего конденсатора.

Конденсаторы должны быть расчитаны на напряжение в 1,5 раза большее чем напряжение питающей сети. Для пуска двигателей применяют конденсаторы типа МБГО, МБГЧ, МБГП или специализированные пусковые (высокая цена).

   Для подбора необходимых конденсаторов можно воспользоваться таблицей. Но как же поступить, если не удалось достать конденсаторов нужной емкости?

   Не волнуйтесь, выход есть. Практика применения бумажных конденсаторов для подключения трехфазных двигателей показала, что вместо этих громоздких монстров можно применить и электролитические конденсаторы.

   Посмотрите на эквивалентные схемы замены бумажных конденсаторов электролитами. 

   Диоды для сети переменного тока 220V выбираются с максимально допустимым обратным напряжением не ниже 300V. Максимальный прямой ток диода зависит от мощности двигателя. Для двигателя мощностью до 1 кВт подойдут диоды типа Д242 – Д247 с прямым током 10 А. 

   При большей мощности можно взять диоды типа ДЛ 200 или поставить несколько менее мощных параллельно и на радиаторах.

   Принципиальную схему включения электродвигателя с применением электролитических конденсаторов смотрите на рисунке. Принцип действия данной схемы и все производимые при пуске манипуляции такие же как и для схемы описанной выше.

   Но что если вам требуется подключить к сети двигатель мощностью 3 – 4 кВт? Двигатели такого типа расчитаны на применение только в сетяз 380V, их обмотки соединены ''звездой'' и в клеммной коробке имеется всего три вывода. Включение такого двигателя в сеть 220v приводит к снижению его номинальной мощности в з раза.

Источник: http://el-shema.ru/publ/skhemy_podkljuchenija/trjokhfaznyj_dvigatel_v_odnofaznoj_seti/13-1-0-34

Как работает трехфазный асинхронный двигатель?

В асинхронном двигателе роль клочка сена играет магнитное поле, которое «бежит» по кругу, вырабатываемое совершенно неподвижными катушками статора. А роль ишачка играет ротор, который гонится за этим полем.

Ну а как только ишачок побежал, главная задача — научиться им управлять. И задача эта не из легких.

Бегущее магнитное поле

Статор асинхронных двигателей, подключаемых к трехфазной сети, состоит из трех электромагнитов. На них подается напряжение разных фаз сети.

А так как разные фазы работают — нарастают и уменьшаются — со сдвигом во времени друг от друга, аналогично будет нарастать и уменьшаться магнитное поле в катушках.

Сначала поле возникнет и будет расти в катушке 1 фазы, через одну треть периода точно так же возникнет и будет возрастать поле во второй фазе, а поле в первой при этом постепенно и плавно, по синусоиде, сначала перестанет нарастать, а потом начнет уменьшаться.

Обратите внимание

Все повторится и для катушки третьей фазы — поле появится, будет возрастать, тогда как поле во второй сначала остановит свой рост, потом пойдет на спад. А в это время поле в первой фазе уже дойдет до нуля и будет возрастать в отрицательную сторону.

Структура трехфазного двигателя

Если в статоре сделать только три обмотки, по числу фаз в питающем напряжении, то магнитное поле будет вращаться с той же частотой, что и напряжение, то есть 50 раз за одну секунду. Но на практике их делают гораздо больше.

Поле в статоре

Тогда бегающее по кругу поле будет иметь частоту вращения меньше, но вращение при этом станет более плавным.   

Поведение ротора в бегущем магнитном поле

 «Обмотки» ротора представляют собой проводники, расположенные «почти» параллельно валу ротора и набранные по кругу в виде «беличьей клетки». Это не обмотки, так как там ничего не намотано, а проводники, воткнутые в два металлических круга. То есть через эти металлические круги, накоротко замкнутые.

Ротор асинхронных двигателей

«Беличья клетка» является замкнутой накоротко обмоткой, которая заполнена пакетом-сердечником, набранным из поперечных тонких пластин из электротехнической стали

Когда на ротор воздействует внешнее изменяющееся магнитное поле статора, в роторе наводятся кольцевые токи, которые, в свою очередь, создают магнитное поле. Это поле, усиленное сердечником, направлено так, что ротор начинает вращаться вслед за бегущим магнитным полем статора.

Вращение направлено в направлении «догнать» убегающую волну. Ротор разгоняется, но, по мере того, как он будет догонять волну статора, наводки в нем будут все меньше и меньше.

Он начнет «приотставать» (от силы трения или от силы сопротивления механической нагрузки на вал ротора), но усиливающаяся от этого в нем индукция снова толкает ротор к вращению.

Такой принцип порождает некоторое рассогласование частот: частота напряжения, которая является причиной движения ротора, не изменяется во времени — стабильно 50 герц, а частота вращения то догоняет, то отстает. Такие несоответствия могут быть незаметны там, где частота не очень важна, но из-за них двигатель и называется асинхронным.

Все мы это прекрасно видели и слышали, когда включали вентилятор. Он сначала набирает скорость, хорошо «берется за дело». Только потом как-то слегка «проваливается» — крутится по инерции, но опять «спохватывается» и «поддает газу».

Идеальный случай вращения в таком двигателе — это когда совсем нет трения и сопротивления, это холостой ход такого мотора. Тогда скорость определяется формулой вращения самого бегущего поля от статора

Формула

Здесь  nr – скорость вращения в оборотах в минуту,
fu – частота питающего напряжения,
p – число катушек статора в каждой фазе.

   Например, если, как нарисовано на картинке с красной стрелочкой вращения поля статора, в статоре три катушки, то есть по одной на каждую фазу, то получим

Важно

  nr = 60 50/1 = 3000 (об./мин) или 50 об./с. То есть скорость вращения равна частоте напряжения в сети. Увеличением количества обмоток в статоре можно добиться снижения скорости вращения

Во многих случаях точная частота вращения двигателя действительно не так важна, поэтому электродвигатели асинхронные трехфазные находят широкое применение.

Трехфазные электродвигатели имеют и другой недостаток: циклические токи ротора вызывают его непрерывный разогрев, поэтому и делают кольцевые металлические пластины с ребрами для охлаждения воздухом при вращении.

Схемы и способы подключения

Так как есть несколько обмоток внутри двигателя — обмотки статора, — и сеть переменного тока бывает однофазной, а бывает трехфазной, то и схема включения всего этого хозяйства допускает вариации.

Обмоток на статоре обычно три. Ну а если их больше, то все равно обмотки каждой фазы внутри уже соединены последовательно. То есть в качестве выходных клемм максимум может быть 6. И их подсоединить к сети можно по-разному.

Систем обозначений клемм две. На старых обозначались буквами С и цифрами 1,2,3 — начала обмоток; цифрами 4,5,6 — концы обмоток.

В новых обозначениях для разных обмоток употребляются буквы U, V, W, а для начал и концов цифры 1 и 2 соответственно.

Клеммы обмоток могут быть на двигателе выведены наружу, и можно самостоятельно подключить трехфазный двигатель к сети переменного тока

Как подключить двигатель по схеме «звезда»

При соединении обмоток по типу «звезда» концы обмоток нужно объединить, а на клеммы начала обмоток подать напряжения фаз из сети.

Подключение трехфазного электродвигателя по схеме «Звезда»

Здесь использованы обозначения клемм электродвигателей трехфазных, применяемые на схемах, старые и новые

При подключении типа «звезда» нулевой провод из сети желательно подавать на общую клемму двигателя. Это защитит его от порчи в случае перекоса фаз в сети.

Как подключить электромотор по схеме «треугольник»

Подключить трехфазный двигатель обмотками в «треугольник» в сеть переменного тока не сложнее. Надо начало одной обмотки соединять с концом следующей. И еще все начала подключить к фазным проводам переменного тока.

Подключение асинхронного двигателя по схеме «треугольник»Клеммник для подключения асинхронного электродвигателя по типу “Звезда”

Два эти подключения — «звезда» и «треугольник» — в сети дают разные результаты по токам и мощностям.

В «звезде» на каждую обмотку подано фазное напряжение 220 В, а две обмотки вместе нагружены линейным напряжением в 380 В. Протекающие в обмотках токи при этом меньше, чем при конфигурации «треугольник». Отсюда и работа отличается: «звезда» дает мягкий запуск, но при работе развивает меньшую мощность, чем «треугольник».

Совет

Зато «треугольник» при запуске дает большие стартовые токи, превышающие номинал раз в 7–8.

Чтобы сочетать преимущества обеих конфигураций, коммутацию делает особая схема. Она при запуске двигателя коммутирована как «звезда», а при достижении определенной мощности переключается в вариант «треугольник».

В этом случае (и в других случаях с постоянными подключениями обмоток), на входном клеммнике оставляют только 3 или 4 клеммы, и вариантов по переключению обмоток по своему усмотрению не остается.

В этом случае просто подключаются фазы в нужном порядке.

Подключение трехфазного двигателя в однофазную сеть

Трехфазное напряжение нашей сети можно представить как одну и ту же фазу, только повторенную еще два раза со сдвигом, сначала на 120°, потом плюс еще на столько же, то есть в результате на 240°. И такое напряжение вполне схематически посильно «добыть» из одной выделенной фазы.

Однако когда мы запускаем «бегущее поле» статора, совсем не обязательно делать его именно с таким сдвигом между поданными на обмотки фазами. Потому что увеличение количества полюсов в обмотках проявляется как уменьшение скорости вращения, но механизм работает.

Поэтому разработаны простые схемы получения сдвинутых фаз из однофазной линии не под таким углом, а под 90°. Это можно сделать простой схемой, дающей подключение трехфазного двигателя в однофазную сеть с применением одного конденсатора. Результатом является снижение мощности двигателя.

При маркировке двигателей, которые можно использовать в однофазной сети 220 В и в сети 380 В трехфазной, так и пишется — двигатель 220/380, а который предназначен для работы только в трехфазной — двигатель 380.

Подключение трехфазного двигателя в однофазную сеть 220 В типа “Треугольник” и “Звезда”

Схема подключения «звезда» в этом случае дает потерю мощности, поэтому для более полного использования двигателя при подключении к однофазному напряжению чаще применяют «треугольник».       

Источник: https://domelectrik.ru/oborudovanie/dvigatel/trekhfaznaya-asinhronnaya-mashina

Трехфазные электродвигатели

Электродвигателем называется устройство, преобразующее электрическую энергию, получаемую из сети распределения, в механическую энергию вращения.

Любой электродвигатель состоит из корпуса, защищающего устройство от пыли и влаги, неподвижной части (статора), жёстко скреплённой с корпусом, имеющей неподвижные обмотки и магнитопроводы, и вращающейся части, называемой ротором.

Ротор жёстко насажен на вал, который вращается в двух подшипниковых узлах (переднем и заднем), конец вала выведен наружу и имеет шпоночную канавку для закрепления шкивов или шестерён привода.

Обратите внимание

Подшипниковые узлы находятся в двух съёмных крышках, которые закрывают корпус с торцов и стягиваются между собой длинными шпильками (как правило, тремя-четырьмя). На заднем конце вала закрепляется крыльчатка вентилятора, который служит для обдува и охлаждения обмоток.

Читайте также:  Опломбирование счетчика электроэнергии - советы электрика

Вентилятор прикрывается крышкой с отверстиями для выхода воздуха. Снаружи на корпусе закрепляется коммутационная коробка, внутри которой находятся клеммы подключения.

Коробка герметично (через резиновую прокладку) закрывается крышкой для защиты клемм подключения от влаги и пыли.

Конструкция электродвигателя весьма удобна для обслуживания и ремонта – двигатель легко разбирается, обеспечивая доступ к любой части, и собирается.

Принцип работы трёхфазного двигателя

Одним из главных преимуществ трёхфазной системы электроснабжения является то, что из-за сдвига фаз синусоид тока и напряжения сети на 120 градусов, такая система способна создавать «вращающееся» электромагнитное поле.

Если мы на неподвижном статоре расположим три обмотки с магнитомягким (это материал, который легко, то есть с минимальными потерями, перемагничивается) сердечником и подадим напряжение на обмотки последовательно от трёх фаз, то ток обмоток начнёт намагничивать сердечники, создавая как бы бегущее по окружности магнитное поле. Это поле в каждом сердечнике синусоидально пульсирует, а во всех трёх создаёт эффект вращения.

Можно подсчитать и угловую скорость вращения магнитного поля при трёх обмотках, расположенных по окружности через 120 градусов, она равна частоте переменного тока – 50 герц, или 50 оборотов в секунду.

Чтобы привести к привычным для нас оборотам в минуту, которыми измеряют скорость вращения вала электродвигателя, нужно 50 оборотов в секунду умножить на 60 (число секунд в минуте), получим 3 000 оборотов в минуту (об/мин).

Отметим, что скорость вращения магнитного поля в статоре можно легко понизить чисто конструктивными методами, например, расположить по окружности не три, а шесть обмоток (сделать шесть магнитных полюсов), расположив их по окружности через 60 градусов, причём 1 и 4 обмотки подключить к одной фазе, 2 и 5 – к другой, а 3-ю и 6-ю – к третьей. Тогда скорость вращения магнитного поля понизится вдвое и составит 1500 об/мин. Аналогично увеличив число магнитных полюсов до 12 и расположив их через 30 градусов по окружности, мы понизим скорость вращения магнитного поля ещё раз вдвое – до 750 об/мин.

Запомним, что электродвигатели переменного тока работают со скоростью, связанной с частотой сети. И для каждой частоты имеется свой ряд скоростей, и величины членов ряда кратны между собой одному числу, например – двойке. (Оговоримся, что могут быть и другие числа кратности, например – 3)

Синхронные электродвигатели

Теперь, если мы в качестве ротора закрепим на валу двигателя постоянный магнит с двумя полюсами, то в бегущем магнитном поле вал начнёт вращаться со скоростью поля. Такие двигатели называют синхронными.

Иногда применяются двигатели с постоянным магнитом в роли ротора, как правило, это маломощные моторчики, к примеру, так выполнен двигатель центробежного насоса слива стиральной машины.

Но для мощных моторов трудно изготовить мощный постоянный магнит, гораздо проще применить электромагнит.

Важно

В этом случае ротор представляет собой, набранный из пластин магнитомягкой стали, сердечник специальной формы, на который намотана обмотка.

Ток на обмотку ротора подаётся из сети через устройство, называемое коллектор. Коллектор – это медные, изолированные друг от друга, два или три (для трёхфазной обмотки) кольца на валу, которых касаются угольные подпружиненные щётки.

Кольца соединены с началом и концом обмотки. Напряжение из сети подаётся к щёткам, и через контактные кольца поступает на обмотку ротора.

Такой электродвигатель называется синхронный, потому что имеет число оборотов равное числу оборотов вращающегося магнитного поля статора.

(Синхронный электродвигатель переменного тока для двухфазной и многофазной сети был запатентован Н. Тесла – американским учёным, изобретателем.)

Однако коллекторы электродвигателей имеют ряд недостатков, угольные щётки при работе искрят (что особо неприятно во взрывоопасной среде), подгорают, из-за чего пропадает контакт (кольца приходится периодически зачищать от нагара). Щётки истираются и требуют замены. Иногда щётки зависают на пружинах и контакт пропадает.

Асинхронные электродвигатели

Изобретательская мысль продолжала работать, и наш соотечественник М. О. Доливо – Добровольский придумал, как можно избавиться от коллектора, он предложил обмотку ротора выполнить в виде короткозамкнутых витков, ток в которых будет возбуждаться переменным магнитным полем статора.

Конструктивно решение обмотки ротора представляло собой два кольца, соединённых между собой поперечными проводниками, наподобие «беличьего колеса» – известная «игрушка» для зверька, в которой белка может бесконечно бегать. Такой двигатель назвали – двигатель с короткозамкнутым ротором.

Работает он так – в момент пуска переменное магнитное поле статора возбуждает в проводниках «беличьего колеса» сильный ток, который намагничивает сердечник ротора и последний притягивается магнитами статора и начинает вращаться.

Совет

Поскольку для появления тока в замкнутых витках ротора необходимо, чтобы магнитное поле менялось, (при синхронном вращении ротора бегущее магнитное поле статора, воздействующее на ротор, на роторе не меняется), ротор будет вращаться с несколько меньшей скоростью, чем вращается магнитное поле статора.

Вследствие этого «запаздывания» такой двигатель назвали асинхронный. А разницу во вращении ротора относительно магнитного поля статора назвали скольжением.

Скольжение асинхронного двигателя – величина переменная, в момент пуска оно максимально, затем начинает уменьшаться и на холостом ходу становится минимальным (около 3%). При наличии нагрузки на валу – скольжение ротора увеличивается и растёт с ростом нагрузки (максимум 7%).

Если мы посмотрим на паспортные данные асинхронных двигателей – то увидим, что номинальное число оборотов двигателя указанное в паспорте и на табличке двигателя всегда будет меньше определённых нами ранее величин – вместо 3 000 об/мин будет около 2850, вместо 1500 будет 1470, вместо 750 – 725.

Эта разница как раз и определяет скольжение.

  Трёхфазный асинхронный двигатель с короткозамкнутым ротором

Конструкция данного двигателя оказалась настолько удачной, что сегодня подавляющее большинство электроприводов в мире сделаны на основе асинхронных трёхфазных двигателей с короткозамкнутым ротором. Именно поэтому владельцы усадьб, в которых имеется техника с электроприводами – насосы, электропилы, различные станки и т. д., стремятся провести себе «три фазы».

Достоинства этих двигателей:

  1. Исключительная простота, надёжность и долговечность.
  2. Удобство обслуживания и ремонта двигателей.
  3. Возможность менять направление вращения ротора простым переключением любых двух фазных проводов.

  4. Возможность работы в режиме генератора, что позволяет применять электромагнитное торможение, при котором мотор начнёт отдавать энергию в сеть.

Однако это достоинство может быть и недостатком.

При замене силовых кабелей и розеток нужно особое внимание уделять оборудованию, как оно было подключено. Нередки такие случаи, какой произошёл в детском саду, когда там понадобилось заменить силовой кабель на более мощный.

После окончания работ, на кухне мясорубки и овощерезки перестали работать, так как их рабочие валы стали вращаться в обратном направлении. А в прачечной механику гладильного барабана вообще заклинило. А всё оттого, что при монтаже кабеля были перепутаны какие-то два фазных провода.

При проведении монтажных работ это нужно учитывать и всегда проверять на каком-либо некритичном двигателе правильность фазировки проводов. Потому что есть такое оборудование, которое может выйти из строя при неверной фазировке.

Недостатки асинхронных электродвигателей

Но наряду с достоинствами эти двигатели, разумеется, имеют и недостатки. Это, во-первых, большой пусковой ток, который превышает номинальный в 4-5 раз.

Последнее обязательно необходимо учитывать при установке автоматов защиты для двигателя – ставить автоматы класса «D». И, во-вторых, малый момент на валу при пуске.

Для некоторых механизмов с большой инерцией приходится ставить более мощный, чем это требуется двигатель.

Подключение и работа трехфазного электродвигателя

Теперь о подключении трёхфазных двигателей к сети. В коммутационной коробке на двигателе концы трёх обмоток выведены на шесть клемм. Там же имеется дополнительная клемма для нулевого провода. Клемма заземления может находиться на корпусе двигателя рядом с лапками или фланцем крепления.

Соединение обмоток может быть произведено двумя способами, так называемыми «звездой» или «треугольником».
Начала обмоток в двигателе в клеммной коробке обычно маркируются как С1,С2 и С3.

Концы обмоток соответственно С4, С5 и С6.

Соответственно соединение звездой производится так, концы обмоток соединяются между собой перемычкой, на клеммы С1, С2 и С3 соответственно соединяются с фазными проводами L1,L2 и L3.

Иногда концы обмоток присоединяют к нулевому проводу, но это не обязательно, так как нагрузка по фазам в двигателе равномерная и по нулевому проводу никакого тока не будет.

Соединение треугольником – это когда соединяются концы и начала обмоток последовательно и к точкам соединения подаются фазы. То есть соединяются С1, С5 и L1; С2, С6 и L2; С3, С4 и L3. Нулевой провод не задействуется.

При этом нужно учитывать, что при соединении звездой на обмотки статора будет подано фазной напряжение, а при соединении треугольником – линейное, которое в 1,7 раза выше фазного. Это нужно учитывать, сверяясь с маркировкой на двигателе, где так и указывается – двигатель 220/380 или 127/220. Последний двигатель в трёхфазной сети 220/380 с высокой вероятностью сгорит.

Особых преимуществ у тех или иных схем включения нет, за исключением повышения мощности при включении треугольником, за счёт работы при более высоком линейном напряжении.

Обратите внимание

Однако как следствие этого, при соединении треугольником пусковой ток значительно выше, чем при соединении звездой.

Для его понижения иногда применяют релейный автомат, который в момент пуска соединяет обмотки звездой, а в дальнейшем переключает соединение на треугольник.

Работа трёхфазного асинхронного двигателя с КЗ-ротором при обрыве одной фазы

Вопрос, имеющий сугубо практический интерес, – что произойдёт с трёхфазным асинхронным двигателем при обрыве одной из фаз?
Если такое произойдёт в момент работы двигателя, то он продолжит работу при любом типе соединения обмоток. Однако мощность его снизится примерно наполовину. И если нагрузка останется максимальной, – неизбежен перегрев работающих обмоток.

Нужно твёрдо усвоить всем людям, имеющим дело с электродвигателями, что любая механическая перегрузка любого электродвигателя вызывает перегрев и сгорание обмоток. А если жёстко застопорить ротор, что бывает при поломках механизмов, которые приводит в движение двигатель, то попытка включить такой электродвигатель вызовет короткое замыкание в сети со всеми вытекающими последствиями.

А вот запустить двигатель при обрыве одной из фаз можно только при включении обмоток звездой и при подключенном нулевом проводе. Опять-таки мощность двигателя при этом уменьшается наполовину со всеми вытекающими последствиями.

Возможность работы трёхфазного асинхронного двигателя в однофазной сети

Этот вопрос довольно часто встречается на практике, например, у вас есть насос с трёхфазным асинхронным двигателем, и вам надо его временно включить, вы согласны даже на то, что мощность насоса понизится, а электросеть у вас в хозяйстве однофазная. Данный вопрос сводится к другому – можно ли при однофазной сети получить вращающееся магнитное поле? Ответ – и да, и нет, одновременно. Да, потому что вращающийся ротор двигателя (если его раскрутить рукой) продолжит вращение и работу.

Нет, потому что запустить двигатель сам по себе – не удастся.

Источник: http://proelectrika.com/trexfazniye-electrodvigateli-html/

Ссылка на основную публикацию
Adblock
detector