Ноль и земля в чем разница – советы электрика

Заземление и зануление: нужны ли они и в чем отличие нуля от земли

Практически каждый из нас слышал о том, что большинство бытовых приборов нужно заземлять, но мало кто может сказать, для чего, и как оно вообще работает.

Еще меньше людей знают, что такое зануление, и совсем немногие могут ответить на вопрос о том, чем отличается ноль от земли.

Тем не менее от правильного заземления или зануления зависит человеческая жизнь, поэтому приведенную в этой статье информацию без преувеличения можно назвать жизненно важной.

Для чего нужно заземлять электроприборы

Предположим, вы купили стиральную машину и установили ее в ванной комнате, подключив к обычной розетке. В этом случае электрическая схема подключения будет выглядеть следующим образом:

Здесь буквами «Г» обозначен источник напряжения (скажем, стоящая во дворе трансформаторная подстанция), «П» — потребитель, то есть ваша стиральная машинка. Пока все в порядке.

Генератор вырабатывает ток (слева на рисунке трехфазный, справа — обычный однофазный), этот ток бежит по «фазным» проводам (черного цвета), крутит мотор прибора и возвращается по синему, «нулевому», который на трансформаторной подстанции согласно ТУ обязательно соединен с землей.

Корпус прибора, обозначенный серым цветом, естественно, не соединяется с электросетью, а значит, не находится под напряжением и его можно касаться.

Обратите внимание

Но что произойдет, если сетевое напряжение случайно (сыро, вибрации, перетерлась изоляция, брак и пр.) окажется на металлическом корпусе машинки? Ток как крутил мотор, так и продолжает крутить, все вроде в порядке. Но если вы коснетесь корпуса прибора, часть напряжения пойдет через ваше тело в землю, а что такое поражение электрическим током, известно всем:

Причем для того чтобы попасть под опасный для жизни ток, совершенно необязательно стоять на сырой земле — для этого вполне достаточно, к примеру, водопроводных труб, или даже просто бетонного пола ванной комнаты.

Но если бы металлический корпус злосчастной стиральной машинки был соединен с той же землей, то все напряжение с неисправного прибора «стекло» бы в землю, и смертельной опасности не возникло.

Итак, чтобы защитить человека от случайного поражения электрическим током при неисправности оборудования, необходимо соединить открытые металлические части прибора (шасси, кожух и пр.) с землей.

Зануление — что это такое и как его сделать

Поскольку нулевой провод, как говорилось выше, уже заземлен у генератора или на трансформаторной подстанции, то проще всего заземлить кожух прибора, электрически соединив его с нулем прямо в самом приборе или розетке:

В этой схеме нижний провод является одновременно и питающим, и защитным.

Теперь если даже напряжение попадет на корпус устройства, оно стечет через провод, отмеченный красным, в землю. Если ток небольшой (так называемая «утечка»), то вы этого даже не заметите.

Если неисправность серьезная, то произойдет короткое замыкание, и в электрощите или на подстанции сработает аварийная система защиты, отключая неисправный потребитель — вашу машинку, а заодно и полдома.

Казалось бы, нет ничего проще, но простота эта лишь кажущаяся. Во-первых, длина нулевого проводника от места заземления до вашей стиральной машины может быть очень большой — десятки и даже сотни метров.

Если к подстанции подключено много потребителей, скажем, многоквартирный дом, то ток через «ноль» будет приличным, а значит, на проводе будет падать напряжение тем большее, чем длиннее провод.

Таким образом, разность потенциалов между нулем в вашей розетке и реальной землей может достигать десятки вольт, что уже небезопасно. Если взяться за корпус прибора с таким потенциалом, стоя на сыром кафеле, можно попасть под опасное напряжение.

Еще один вариант. В результате аварии ноль в том или ином месте отгорает. Все электрооборудование окажется неработоспособным (току некуда течь), но все оно одновременно окажется под высоким напряжением, включая и корпуса зануленных приборов. Малейшее касание, казалось бы, обесточенного оборудования — и человек под током!

Таким образом, несмотря на всю простоту исполнения, зануление имеет существенные недостатки:

  1. Если длина нулевого провода велика, зануленный прибор все равно окажется под напряжением относительно земли — хоть и не полным сетевым, но не менее опасным.
  2. В случае обрыва нулевого провода все зануленное оборудование превращается в смертельно опасное. Причем опасность эта увеличивается многократно тем, что с виду оборудование кажется обесточенным — лампы не горят, чайник не греет, машинка не стирает.

Заземление: что это и чем отличается от зануления

Теперь пора выяснить, что такое заземление, а заодно и решить вопрос о том, чем отличается заземление от зануления. По сути, заземление — электрическое соединение с землей. Именно это и делают электрики на подстанциях и в электрощитах — заземляют нулевой провод. Но чем чревато зануление вы уже знаете — это было описано выше. Осталось решить такой вопрос: «Ноль и земля — в чем разница?»

Предположим, в вашей ванной комнате есть гипотетический болт с гайкой, надежно соединенный с землей. Если вы подключите к нему корпус вашей стиральной машины, то она окажется надежно заземлена, причем не «где-то там», на подстанции, а «здесь». Это и есть заземление.

Поскольку заземляющий провод имеет небольшую длину, целостность его легко контролировать визуально, а падения напряжения на нем, в отличие от нулевого провода, не может быть по определению, ведь в обычном режиме заземление не используется для питания электроприборов — для этого служит нулевой провод.

Итак, чем отличается ноль от заземления? Ответ очевиден: напряжение на заземлении относительно земли (простите за каламбур) всегда равно нулю. Напряжение же на нулевом проводе относительно земли далеко не всегда равно нулю, а потому утверждение «Прибор занулен, а значит, электробезопасен» не всегда есть истина.

Естественное или искусственное

В зависимости от поставленной задачи можно использовать естественное и ли искусственное заземление.

Естественное заземление, по сути, удачное стечение обстоятельств. Оно не создавалось специально для заземления приборов, но вполне может использоваться в этих целях. К примеру, водопроводный кран.

Все трубы, подводящие к нему воду, находятся в земле, а значит, имеют с ней хороший электрический контакт (конечно, если они металлические). Рядом с домом вкопан длинный металлический шест или труба, скажем, молниеотвод.

Они тоже могут применяться в качестве рабочего заземления.

Важно

Но и тут есть одно «но». Вы уверены, что водопровод надежно соединен с землей, а не лежит, скажем, в бетонных желобах? А может, сосед снизу решил заменить кусок стояка и разрезал его пополам? Неуверены, не знаете.

Если вы заземлили прибор, «прикрутив» его кожух к водопроводному крану, и, не дай Бог, произошла авария, то в вышеуказанных случаях под опасным для жизни напряжением окажется весь водопроводный стояк, а значит, и десятки водопроводных кранов в десятках квартир!

Таким образом, естественное заземление можно использовать только в следующих случаях:

  1. Вы уверены, что используемая арматура (тот же водопровод) надежно соединена с землей и не может быть демонтирована без вашего ведома.
  2. Вы заземляете устройство, которое по определению не может оказаться под опасным для жизни напряжением. К примеру, корпус автономного приемника для более уверенного приема или жало паяльника, браслет для снятия статического электричества перед монтажом чувствительной к статике аппаратуры.

Во всех других случаях необходимо изготовить заземление самостоятельно, и называться оно будет искусственным.

Делаем искусственный вариант

Самостоятельно изготовить заземление совсем несложно, но потрудиться придется.

Прежде всего придется выкопать яму глубиной метра полтора, а если почва песчаная, то лучше два. В эту яму нужно уложить массивный металлический предмет.

Подойдет лист железа, мятая старая бочка, кастрюля или ведро (не эмалированные!), рама какого-либо механизма, решетка, сваренная из арматуры или ненужных труб.

Чем больше площадь предмета, тем надежнее будет заземление, но минимум — сплющенное ведро.

Можно поступить и по-другому. В дно ямы вбить толстую метровую трубу, уголок или даже ненужный лом. Площадь такого заземления будет меньше площади той же бочки, но зато оно будет расположено в более низких и сырых областях грунта.

Читайте также:  Три фазы что это такое - советы электрика

Теперь к этому предмету нужно приварить или, используя болты, надежно и прочно прикрутить толстый провод. Это может быть толстая железная проволока «катанка», арматура или просто толстый провод. Место соединения провода с предметом, который будет служить заземлением, нужно защитить от коррозии — покрасить, залить битумом и пр.

 Осталось закопать яму, утрамбовать землю и хорошенько ее полить обычной водой. Заземление готово!

Источник: https://ObInstrumentah.info/zazemlenie-i-zanulenie-nuzhny-li-oni-i-v-chem-otlichie-nulya-ot-zemli/

Как определить фазу, ноль, землю среди трех проводов

Эта статья посвящена практической задаче, которая не редкость в практике домашнего электрика – как определить фазу, ноль и землю, если есть трёхжильный кабель, но нет маркировки что где. Но прежде, чем будем выяснять, как найти фазу, вспомним, что это за зверь такой.

Несколько слов об электричестве и распространённые заблуждения

Постоянный ток берётся из батарейки и имеет два полюса: плюс и минус. Заряд в батарейках (аккумуляторах) возникает вследствие химической реакции. При этом заряд возникает в момент замыкания «+» и «-», поэтому батарейки хранятся и работают довольно долго.

Проще, говоря, батарейка даёт ток тогда, когда он нужен. Плюс и минус при этом показывают направление тока, а в приборах полярность важна, поэтому все источники постоянного тока промаркированы.

Точнее, нам не встречались не промаркированные батарейки, а попались бы – выкинули.

Переменный ток гораздо сложнее по своей природе. Для понимания, как определять фазу, ноль и землю , попробуем понять, в чём разница. Мы не претендуем на диссертацию, нас интересует практический аспект, поэтому постараемся объяснить просто, и пусть физики смеются.

Если взять магнит, сунуть его в трубу, на которой намотано три витка одинаковой проволоки, после чего начать магнит вращать, на каждой из трёх проволок появится ток. Витки проволоки сдвинуты на угол 120 градусов, этот сдвиг и является фазой. Ток, который мы получим, будет трёхфазный.

То есть по характеристикам одинаков, но если представить ток как синусоиду, эти три синусоиды будут сдвинуты относительно друг друга.

Всё это используется потому, что если полученные три фазы подать на такую же трубу с магнитом, этот ток создаст вращающееся магнитное поле, что очень пригодилось во всех электродвигателях, сделав их проще и дешевле.

Совет

Добавим, что ток характеризуется разницей потенциалов между проводом, в котором возник ток и нулевым проводом. Наличие этого мостика (нулевого провода) позволяет с генератора электричества снять не три фазы, а две, или одну. Так и происходит в трансформаторе, от которого питается Ваш дом или квартира.

Напряжение в трансформаторе 380В, а вот напряжение между фазой и нейтралью (нулевым проводом) те самые 220В, которые поступают к нам в квартиру. Фазировка может отличаться для потребителей, а значит, три фазы снятые отдельно, почти всегда имеют разную загрузку.

Для корректировки разницы и борьбы с перегрузками используют заземление. В трансформаторе используется т.н. «глухозаземлённая нейтраль», позволяющая корректировать разницу нагрузок. Это возможно из-за того, что Земля (здесь – наша планета) имеет бесконечно низкий (нулевой) потенциал по отношению к любому электрическому.

Критическую разницу потенциалов такая заземлённая нейтраль при опасности сбросит «на землю».

Представьте колодец с водой, разделённый вертикальной перегородкой на три части. Сначала уровень воды одинаков везде. В трёхфазной сети, сколько не черпай воду, черпаешь одновременно из трёх секторов тремя ведрами. Поэтому уровень воды в колодце всегда одинаков. Что происходит, когда черпаем по одной фазе? Мы черпаем воду случайным образом, не видя, в какой сектор попадает ведро.

Очевидно, что в каком-то секторе воды станет меньше. Глухозаземлённая нейтраль трансформатора – это кран в колодце, который позволяет пополнить пустеющие сектора для того, чтобы выровнять уровень воды. Нулевой провод от потребителя, образно говоря, сливная система, позволяющая небольшой излишек воды «слить обратно». Обдумайте эту аналогию, она даст понимание природы тока в квартире.

Несколько заблуждений, имеющих место быть в решении вопроса как определить фазу

  1. На нулевом проводе нет напряжения, он же нулевой! Это страшная ошибка, поскольку нулевой провод полноправный участник токопроводящей системы. Заблуждение возникает из непонимания, что нулевой провод – это зверь, сидящий в засаде и прыгающий на жертву, как только она подойдет близко.

  2. Если есть заземление, то короткого замыкания не будет . Будет. Наличие заземления в розетках квартиры хотя и имеет значительно более низкий потенциал, чем 220В, но имеет своё сопротивление (как и все провода) и может просто не успеть «прокачать» излишек тока.

    Тем не менее «земля» позволяет успешно удалять паразитные токи, в том числе статические, поэтому если есть возможность, обязательно используйте и подключайте третий провод кабеля – землю.

  3. Третья жила в кабеле, которая разноцветная – это точно земля.

    Неверно! Да, так должно быть, но наследием 90-х стали и кабели из трёх разноцветных жил и неразбериха в стройке, поэтому сегодня исходить надо из того, что понимать, как найти ноль и фазу крайне полезно.

  4. Нет разницы в розетке, где фаза, а где ноль, питание всё равно будет . Не совсем верно.

    Есть множество приборов, особенно умных контроллеров, для которых важно где фаза, а где ноль. Например, управляющие контроллеры газовых котлов. Ошибка «недостаточное напряжение» исправляется тем, что надо перевернуть вилку в розетке.

Определяем фазу, ноль, землю без измерительных приборов

  1. Обесточиваем линию. Если сомневаетесь где этот автомат – обесточьте всю квартиру ! Собираем подручный пробник. Две случайно выбранные жилы заводим в клеммник. С другой стороны клеммника закрепляем два тонких гвоздика. Разделываем многожильный кабель, отделяя одну тонкую жилку (чем тоньше, тем лучше).

    Включаем питание и роняем жилку на гвоздики так, чтобы линия замкнулась. Под пробник надо подстелить что-нибудь не горючее (сковороду).

  2. Если ничего не произошло, мы решили задачу, как определить фазу, поскольку замкнули ноль и землю. Плоскогубцами берём эту жилку, убеждаемся, что контакт надёжен. Берём ещё один гвоздик и снова замыкаем контакты.

    Да, ничего не происходит – это ноль и земля.

  3. Если жилка сгорела (при наличии тонкой жилки даже автомат не отключится), эта пара или земля – фаза, или фаза – ноль. Записываем – чёрный – белый замкнуло. Отключаем питание, меняем один кабель, повторяем эксперимент. Допустим, замкнуло снова – записываем черный – цветной замкнуло.

    Мы опять решили задачу, как найти фазу, но проверим. Черный провод замыкает с белым и цветным. Значит белый и цветной должны не замыкать линию. Отключаем питание, собираем пар белый – цветной, подаём питание, повторяем опыт. Замыкания нет, мы определили фазу.

  4. Теперь задача усложнилась.

    Мы имеем два кабеля, и нам надо понять, как определить ноль и фазу, для чего потребуется не замыкание, а прибор, который покажет наличие тока, или КЗ. Старый патрон с минимально доступной по мощности лампочкой подойдёт.

  5. Отключаем питание, в клеммник заводим чёрный кабель, и цветной. С другой стороны подключаем патрон с лампой.

    В сковороду кладем кусок доски, на который кладём патрон с лампой. Включаем питание.

  6. Произойдет одно из двух – лампочка загорится, значит, задачу, как найти ноль и фазу мы решили, это черный и цветной провода. Оставшийся белый провод это земля.

Описанный процесс занял примерно час, никакого ущерба не было, поскольку большая часть времени была уделена предосторожностям и безопасности. Именно безопасность главное в этом эксперименте!

Проверяем по очереди все три жилы. Прикосновение к одной из них покажет огонёк в отвёртке. Задачу как найти фазу решили сразу, а значит можно применить первый способ в версии лайт – последний этап, сразу включив лампочку между фазой и одним из проводов.

Применяем мультиметр

На фото представлен случайно выбранный мультиметр, который позволяет найти фазу, ноль и землю двумя способами. Может и тремя.

Но даже на конкретном примере мы не покажем положение переключателя, этот прибор требует понимания в обращении.

Описание процесса как при помощи мультиметра определить фазу, мы не приводим, поскольку в зависимости от модели процедуры могут отличаться. В руководстве по эксплуатации процедуры описаны для каждого прибора, поэтому, что и как делать, почерпните оттуда.

Инструментов нет, но в доме есть УЗО

Это на самом деле немного упростит задачу. Пробник нам всё же понадобится. Тем не менее, из принципа работы знаем, что при работающем приборе в сети, замыкание между нулём и землей вызовет утечку тока, что приведёт к отключению УЗО.

Это поможет нам точно понять пару ноль – земля. Дальше действуем так же, но можно сразу собирать лампу – индикатор. В случае ошибки (КЗ фаза – земля) отключится автомат, УЗО также выключит питание.

То есть при наличии УЗО такой опыт в целом более безопасен.

Внимание! Наличие УЗО не отменяет мер безопасности, это только дополнительная страховка!

Обратите внимание

Исходим из того, что у такого человека уже есть индикаторная отвёртка и мультитестер, которым он умеет пользоваться.

Потратьте уже 300 рублей (в ценах Москвы 2015-года), купите индикаторную отвёртку и мультитестер. Потом потратьте два часа на то, что бы научится ими пользоваться. Это сэкономит Вам множество времени!

Но, допустим, сломался тестер. Он возьмёт батарейку 1,5 вольта, лампочку и длинный провод, обесточит щиток и прозвонит все три жилы от электрического щита до проблемного места.

Сложность возникнет в случае, если провода ноль и земля заведены на одной клемме (есть щитки с такой конструкцией). В большинстве случаев нулевой провод будет на нулевой шине. При таком подходе вопрос как определить фазу не вопрос, мы её прозвонили.

А ноль мы определим, отсоединив один из проводов (если они на одной клемме), при этом мы не знаем, отсоединили ноль или землю, и, прозвонив отсоединённый провод до розетки сидящей на этом же автомате, в которой точно знаем, где какая жила. Разумеется, обесточив предварительно весь контур.

Отсоединение необходимо для изоляции двух жил – земли и нуля, поскольку они имеют общие точки контакта!

В данном случае цвет жил на одном участке может отличаться, в этом проблема. Но в любом случае, прозванивая отсоединённый провод, мы узнаем, куда он пришёл в маркированную розетку: на контакты или на лепестки земли. Проводить такой поиск можно, только понимая устройство щитка и имея практические навыки !

Фактически мы описали процесс, который позволяет быстро и без ущерба для здоровья определить как фазу, так и ноль с землей.

Ещё несколько способов, которые позволяют ответить, как определить фазу

Вольтметр позволит измерить напряжение между батареей отопления (если она металлическая) и всеми тремя проводами. При этом фаза даст 220В, ноль примерно 10-30В, а земля ноль. То же самое можно проделать с мультитестером (при наличии функции), не забыв зачистить пятнышко на батарее для хорошего контакта.

Если сохранились старые предохранители, которые некуда деть, возьмите один плоскогубцами с хорошей изоляцией и поочередно замкните сначала два провода, если сгорит – это фаза–земля, если нет – земля–ноль, или фаза–ноль.

Также запишите наблюдения, возьмите второй предохранитель и, действуя по схеме описанной в первой части, замыкайте оставшиеся, чтобы окончательно определить как ноль, так и фазу с землёй. При правильности действий понадобится один или два предохранителя.

Один из самых безопасных способов при отсутствии приборов.

Важно

Решая эту задачу, имейте в виду, что проводка не идеальна. При определении в этом случае возникла проблема – не удавалось определить фазу, ноль, землю. Только специалист помог обнаружить короткое замыкание двух жил. Поэтому поврежденная жила была исключена, заизолирована.

Розетки здесь не имеют заземления. Вообще, задача поиска принадлежности жил в кабеле не редкое дело, особенно у тех, кто занимался своей электросетью от случая к случаю. Обычно в таких хозяйствах не маркированы даже автоматы, не говоря о жилах. Хотя задача промаркировать всю сеть в двухкомнатной квартире заняла у автора статьи всего пять часов. Возьмите на заметку…

Источник: http://obelektrike.ru/posts/kak-opredelit-fazu-nol-zemlju-sredi-treh-provodov/

Чем отличается ноль от заземления?

Функция заземления и зануления одна – защита человека от поражения электрическим током. Оголилась токоведущая жила, произошла утечка тока на корпус электроприбора, повредился корпус розетки – подобная неполадка может привести к неприятным последствиям.

Избежать этого помогут рассматриваемые защитные приспособления, которые призваны нейтрализовать опасный фактор, обеспечить безопасность человека и его имущества. В статье расскажем про заземление и зануление в чем разница и сходство, рассмотрим их назначение и схемы монтажа.

В чем разница между занулением и заземлением?

Удобнее всего рассматривать отличие заземления от зануления на примере подключения бытовых электроприборов. Современные дома оборудованы трехпроводной электропроводкой, где проводник РЕ является заземляющим и не зависит от проводника рабочего нуля N. Таким образом, корпус электроприбора, соединенный с РЕ-проводником, получает надежную связь с землей – заземление.

Схема зануления с указанием расщепления на N и РЕ на клеммнике щитка

Старые постройки имеют двухпроводное электроснабжение, состоящее из проводника L – фазы, N – рабочего нуля. N выводится от заземляющей шины в общедомовом или подъездном электрощите. Изначально он называется PEN-проводником и может быть расщеплен на N и РЕ.

Расщепление должно быть сделано до ввода в квартирный распределительный щиток, либо непосредственно в щитке. Далее провод РЕ соединяется с корпусом электроприбора также, как в первом варианте, но такая схема будет называться занулением, так как связь с землей не является прямой, а осуществляется посредством нулевого проводника.

Какая система надежнее?

Для сравнения можно ознакомиться с несколькими пунктами:

  • Как показывает практика, нередки случаи обрыва или отгорания нулевого провода в электрощите, что делает зануляющую систему защиты не действующей. В этом случае появляется реальная угроза поражения человека электрическим током. Во избежание подобной проблемы, места коммутации нужно периодически осматривать, что создает определенные неудобства.

Подгоревший нулевой провод в распределительном щитке близок к полному обрыву

  • Заземляющая система избавлена от указанных недостатков, так как РЕ-проводник не участвует в общей работе электропроводки и задействуется только при возникновении утечки, чтобы отвести ток на землю.
  • Устройство зануления требует определенных знаний и навыков работы с электрическими цепями, что в случае их отсутствия также причиняет некоторые неудобства, связанные с необходимостью вызова электрика.

Принимая во внимание изложенное, можно сделать вывод, что система заземления более надежна и безопасна, поэтому лучше использовать ее. Однако в случае отсутствия такой возможности, можно прибегнуть к альтернативному варианту.

 Запрещается производить зануление непосредственно в розетке путем установки перемычки между нулевым разъемом и заземляющей скобой. Это создает угрозу для человека (поражение электротоком) и для бытовой техники.

 

Устройство защитных токовых отводов при работе с трехфазным электрическим оборудованием

Коммутация трехфазных потребителей электроэнергии отличается от подключения обычной бытовой электротехники, поэтому устройство защитных систем осуществляется иным способом.

При этом не нужно путать нулевой или заземляющий провод, участвующий в системе управления, то есть, задействованный в схему пуска и остановки агрегата, с защитным проводником, предназначенным для отведения опасного разряда на землю.

Оформление, разводка, подключение электрооборудования

Работы производятся в несколько этапов:

  1. По периметру помещения обустраивается отдельная линия (трасса), выполненная из узкой металлической полосы 40х3 мм или медного провода сечением 16 мм.кв.
  2. На ней в скрытом месте монтируется шина (желательно медная) с контактными приспособлениями (шпильками или отверстиями для болтовых соединений). Допускается использование металлической шины, но в этом случае приваривание шпилек – обязательное условие.
  3. Эта линия соединяется с контуром заземления или зануления, выведенным отдельным проводом от распределительного щита и имеющим надежную связь с землей либо прямую, либо через рабочий ноль
  4. Корпуса всех потребителей (трехфазных электродвигателей) через медный провод соединяются с описанной шиной.

При возникновении короткого замыкания от утечки напряжения из-за нарушения изоляции или «пробития» одной из фаз на корпус заземленного электрооборудования, ток сразу будет уходить в землю по пути наименьшего сопротивления, то есть через соединенную с рабочим нулем или землей жилу. Это сохранит человека от поражения электротоком при касании корпуса прибора.

Устройство зануления допускается только в случае отсутствия возможности коммутации с земляным контуром. Во всех иных случаях правильным считается только защитное заземление.

Агрегат через медный провод соединен с шиной, смонтированной от заземляющей трассы

Обязательное использование дополнительных защитных устройств

Описанные заземляющие и зануляющие системы эффективны при возникновении значительных утечек или коротких замыканий на корпус электроприборов. Однако для достижения полной безопасности при обслуживании оборудования необходимо применение дополнительных средств защиты, обеспечивающих разрыв электрической цепи при возникновении нарушений их работы.

На производственных предприятиях это могут быть блоки автоматики (контроля изоляции БКИ или максимальной токовой защиты). Но наиболее распространенными средствами, как на производстве, так и в быту, являются автоматические выключатели и устройства защитного отключения, которые:

  • обеспечат обесточивание электрической цепи в случае возникновения неполадок;
  • защитят пользователя от поражения электрическим током;
  • предохранят технику от возгорания.

Такие приборы могут иметь исполнение для однофазных или трехфазных систем. Они бывают:

  • однополюсные – устанавливаются на одну из линий (ноль, фаза);
  • двухполюсные – устанавливаются на оба провода электропроводки;
  • многополюсные (три и более) – используются при трехфазном напряжении.

Схема бытовой проводки с РЕ-проводником заземления и защитой ВА и УЗО

Автоматический выключатель производит отключение при превышении токовой нагрузки номинального значения, указанного на корпусе прибора. УЗО контролирует состояние электросети и срабатывает при появлении самых незначительных утечек тока.

Возможные неисправности электрической сети и действие защитных устройств при их возникновении

Вниманию пользователей представляется описание самых распространенных неполадок, возникающих при эксплуатации электроприборов. Для удобства рассмотрения данного вопроса, информация сведена в таблицу:

№ п/п Неисправности Защита
1. Нарушение изоляции электропроводки в стене или потолке Заземление (зануление) УЗО
2. Утечка тока на корпус из-за влажности, нарушения контакта, перетирания провода -/-/-, УЗО
3. Короткое замыкание -/-/-, выключатель автоматический
4. Выход из строя ТЭНа, двигателя (пробой фазы на корпус, в том числе через воду) -/-/-, ВА
5. Действие через корпус прибора тока от конденсаторов системы электроники -/-/-, УЗО

При правильном устройстве защитного заземления (зануления) и применении дополнительных средств защиты, указанные факторы не смогут причинить значительного вреда имуществу или здоровью человека.

Ошибки, допускаемые при монтаже

Наиболее распространенными ошибками при устройстве систем защиты бывают следующие:

  1. Недостаточный контакт жилы, соединяющей корпус электроприбора с заземляющей шиной. В этом случае эффективность защиты уменьшается. Запрещается осуществлять контакт с шиной заземления через скрутку. Соединение должно быть только болтовым
  2. Использование в качестве заземлителя трубопроводов отопительной или водопроводной системы. Утечки тока могут проявляться путем поражения через воду или прикосновение к трубам. Кроме того от этого могут пострадать соседи.
  3. В случае отсутствия специального образования или навыков работы с электроприборами, лучше доверить устройство защитных систем опытным специалистам.
  4. Применение в качестве жилы между потребителем и заземляющей шиной алюминиевого провода. Может произойти окисление и контакт будет утрачен.
  5. Неправильная коммутация зануляющего провода при расщеплении с рабочим нулем (фиксация под один зажим). Возможно отгорание проводника и выход из строя защитыУстройство зануления непосредственно в розетке или в распределительной коробке. При нарушении целостности или отключении рабочего нуля (вышел из строя автомат, отгорел контакт), прибор может оказаться под опасным напряжением.

Источник: https://chudoogorod.ru/bl/chem-otlichaetsya-nol-ot-zazemleniya.html

Ссылка на основную публикацию
Adblock
detector