Проверка изоляции кабеля – советы электрика

Как проверить изоляцию проводов

Вам понадобится

  • – мегаомметр;
  • – электрик с группой безопасности III или IV.

Инструкция

Для того чтобы проверить изоляцию проводов, найдите опытных специалистов-электриков с группой по электробезопасности не ниже III или IV. При проведении всех работ руководствуйтесь Правилами устройства электроустановок (ПУЭ) и Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Подберите подходящий прибор. Для измерения сопротивления изоляции кабеля сечением менее 16 кв. мм возьмите мегаомметр на 1000 В, для более толстого или бронированного кабеля – на 2500 В. Изоляцию любого провода можно измерить мегаомметром на 1000 В.

Чтобы проверить изоляцию электропроводки с сопротивлением изоляции менее 1 МОм, испытайте их переменным током напряжением 1 кВ промышленной частоты.

Для того чтобы результаты измерений носили официальный характер, приборы должны пройти ежегодную поверку в органах Госстандарта РФ.

Обратите внимание

Обратите внимание, измерения должны проводится при температуре изоляции выше +5⁰С и при низкой степени увлажненности.

Чтобы узнать степень увлажненности, рассчитайте коэффициент абсорбции, разделив измеренное сопротивление изоляции через минуту после приложения напряжения прибора на сопротивление изоляции через 15 секунд. Этот коэффициент не должен отличаться от заводских данных более, чем на 20%.

Подсоединяйте мегаомметр к проводу при помощи гибких проводов с ограничительными кольцами перед щупами контакта и рукоятками на концах для изоляции. Чем меньше будут соединительные провода, тем точнее будут измерения, сопротивление их изоляции не должно быть менее 10 МОм.

Перед началом измерений проверьте испытываемый объект, на нем должно отсутствовать напряжение. Если есть необходимость, проведите заземление (после подключения прибора).

В месте подсоединения прибора очистите изоляцию от грязи и пыли. Подсоедините провод к гнездам мегаомметра. Выберите выходное напряжение, которое будет соответствовать испытываемому проводу или кабелю.

Если вы измеряете сопротивление изоляции при помощи прибора генераторного типа, вращайте рукоятку генератора со скоростью 120-140 оборотов в минуту. Для начала работы цифрового измерителя достаточно нажать кнопку.

Снимите показания прибора и запишите. Если измерений несколько, после каждого снимайте емкостной заряд, заземляя те части объекта, на которые подавалось напряжение.

Источники:

  • как проверить сопротивление изоляции в 2019

Источник: https://www.kakprosto.ru/kak-115631-kak-proverit-izolyaciyu-provodov

Измерение сопротивления изоляции электропроводки: мегаомметром 1000В

По токоведущим жилам проводов и кабелей ток течет в нужном направлении. А изолирующее покрытие этих жил препятствует прохождению тока в места, где ему нельзя появляться. Это исключает случайное прикосновение людей к токоведущим частям, предотвращает короткие замыкания в распределительных сетях.

Измерение сопротивления изоляции

Но оболочки проводников – вещь непрочная. Уже в процессе прокладки кабеля их можно передавить или содрать об острые кромки предметов, попадающихся на трассе.

При разделке концов кабеля можно случайно порезать ножом изоляцию токоведущих жил.

При пайке поливинилхлорид плавится и теряет изоляционные свойства, а резина со временем высыхает и трескается, обнажая покрытые ею проводники.

Причины ухудшения изоляции

Способствует ухудшению изоляционных свойств кабелей и локальные нагревы контактных соединений. Тепло, распространяясь по металлической жиле, нагревает материал покрытия, снижая его изоляционные свойства. Это относится и к соединительным коробкам, и к местам подключения проводников к автоматическим выключателям, нулевым шинам, розеткам.

Повреждение изоляции из-за перегрева

Корпуса коммутационных аппаратов: выключателей, автоматов, рубильников – выполняются из изоляционных материалов. Снижение изоляции происходит, если на них оседает пыль, грязь, металлические опилки. Уменьшению изоляционных свойств содействует перегрев корпусов, обугливание их после коротких замыканий.

Бич электрощитовых – влажность.

Повреждения трубопроводов, образование конденсата, подтопление подвальных помещений с распределительными устройствами – все это приводит к появлению капелек воды между выводами электрооборудования, находящихся под разными электрическими потенциалами.

Вода в чистом виде электрический ток не проводит. Но, попадая на грязь и пыль, покрывающую корпуса электроприборов, она растворяет находящиеся в ней вещества, становясь проводником электрического тока. Происходит короткое замыкание.

Повреждение изоляции кабеля в процессе монтажа

Наибольший риск встретить поврежденную изоляцию возникает после монтажных работ.

Важно

Второй пик проблем встречается уже в эксплуатации, через некоторое количество лет после монтажа.

Отдельным видом выделяются повреждения, связанные с неправильной эксплуатацией электроприборов и электропроводки, затопления квартиры соседями и вбитые в трассу гвозди при попытке повесить картину на стену.

Отличие мегаомметра от мультиметра

Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.

Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита.

Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине.

Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.

Устройство мегаомметра

Для измерений этот прибор выдает в проверяемую цепь постоянный ток. Переменный для этой цели не годится, поскольку все кабельные линии обладают емкостным сопротивлением. А конденсаторы переменный ток проводят. Это приведет к искажению результатов измерений.

В зависимости от рабочего напряжения сети и тестируемой аппаратуры, выпускаются мегаомметры с напряжением 100, 500, 1000 и 2500 В.

Стовольтовые используются для проверки изоляции низковольтных кабелей и полупроводниковой техники, на 500 В – обмоток электрических машин небольшой мощности. Приборы с напряжением 2500 В предназначены для измерений на высоковольтных аппаратах, кабельных и воздушных линиях.

Какой прибор выбрать для проведения измерений – указано в нормативно-технической документации по наладке или эксплуатации, ПУЭ, паспортах на электрооборудование.

В устаревших конструкциях мегаомметров для выработки измерительного напряжения использовался генератор, ротор которого приводился во вращение рукояткой. Ее раскручивали до скорости 120 оборотов в минуту, иначе напряжение на выходе оказывалось ниже номинального.

Измерительный механизм у таких устройств – аналоговый, со шкалой и стрелкой. Шкала делилась на две части – верхнюю и нижнюю, соответствующие двум диапазонам измерения сопротивлений. Отметки на шкале располагались неравномерно, что усложняло отсчет показаний.

Да и снимать эти показания, одновременно вращая ручку мегаомметра, было не очень-то удобно – корпус прибора дергался, стрелка прыгала. К тому же у пользователя были заняты обе руки: одной он удерживал прибор на месте, другой – крутил ручку.

Совет

Измерительные щупы на контактах удерживал его помощник, либо к ним припаивали зажимы типа «крокодил».

Мегаомметр М4100

Для каждого измерительного напряжения выпускался свой мегаомметр. Лишь модель типа ЭСО 202 содержала переключатель на 500, 1000 или 2500 В. Для выполнения измерений в электролабораториях содержали целый парк мегаомметров.

Мегаомметр ЭСО 202/2

Современные приборы стали полупроводниковыми.

Выбор пределов измерений у них происходит автоматически, а испытательное напряжение выбирается перед измерениями в меню или с помощью переключателя.

Габариты прибора позволяют его удерживать в руке совместно с одним из щупов, что позволяет проводить измерения единолично. Некоторые модели снабжаются кнопкой запуска на одном из щупов.

Мегаомметр Fluke

Но многие современные мегаомметры имеют один существенный недостаток, переводящий их в режим обычного пробника.

По правилам, измеренным сопротивлением изоляции является величина, показанная прибором через 60 секунд после начала испытания.

Большинство же моделей выдают испытательное напряжение на несколько секунд и не имеют режима длительной генерации напряжения. Не все дефекты можно выявить за столь короткое время.

Правила проведения измерений мегаомметром

Мегаомметр относится к приборам, измеряющим характеристики электрооборудования, связанные с определением возможности его безопасной эксплуатации. А на его выводах при измерениях присутствует опасное для жизни напряжение. Поэтому его применение возможно в случаях:

  1. Прибор должен проходить метрологическую поверку один раз в год.
  2. Пользоваться мегаомметром дозволяется обученному персоналу.
  3. Правом выдачи протокола с заключением о пригодности электропроводки к дальнейшей эксплуатации обладает только лицензированная электротехническая лаборатория. Измерения, проведенные другими лицами, юридической силы не имеют.

Если в вашем распоряжении оказался мегаомметр, то измерять сопротивление изоляции вы можете только по личной инициативе. Закончили монтаж электропроводки соседу, измерили — убедились в отсутствии дефектов.

Но если при подключении соседского домика к сети энергоснабжающая организация потребует протокол измерений – ваши труды не зачтутся.

Соседу придется вызывать специалистов и платить им деньги за ту же самую работу.

В детских садах, школах, учреждениях и на предприятиях сопротивление изоляции электропроводок измеряется регулярно. Результаты оформляются протоколами, которые требуют представители пожарной охраны и энергонадзора. К протоколам прикладываются регистрационные документы лаборатории, выполнившей измерения. Без них они – никому не нужная бумажка.

Протокол измерения сопротивления изоляции

Если в помещении организации произойдет пожар, первым делом от ее руководителей требуют протоколы измерений изоляции. Если их нет – виновные определяются автоматически.

То же происходит и при поражении сотрудника электрическим током. Даже, если он сам засунул в розетку отвертку, держась за ее стержень.

Если при расследовании несчастного случая не обнаружится протокол измерений изоляции – проблемы руководству обеспечены.

Тем не менее, мегаомметр – прибор, полезный для людей, занимающихся монтажом электропроводки. Лучше найти дефект сразу, до приезда специально обученных персон.

Иначе они приедут еще раз, после устранения дефекта. Искать его самостоятельно персонал лаборатории не обязан. Вернувшись, они заставят владельца выложить дополнительную сумму за труды.

Скорее всего, он вычтет ее из вашего гонорара.

После замены электропроводки в квартире измерения изоляции официально не требуются. Поэтому их не помешает выполнить для самоуспокоения, а в глазах клиента ваш рейтинг в итоге только возрастет.

Правила измерения изоляции мегаомметром

Перед каждым использованием у любого мегаомметра проверяют целостность изоляции измерительных проводов. Это важно, так как повреждения приводят к электротравмам.

На мегаомметре устанавливают необходимое испытательное напряжение , затем проверяют исправность измерительной цепи и прибора. Для этого щупы соединяют накоротко, производят измерение.

Прибор покажет ноль. Щупы рассоединяют и снова проводят измерение. Прибор покажет бесконечность.

Обратите внимание

Эти манипуляции производят регулярно, чтобы своевременно обнаружить сбитые настройки, оборвавшийся провод, ослабевший контакт или неисправность мегаомметра.

Правила измерений сопротивления изоляции требуют, чтобы для кабельной линии была измерена изоляция между жилами во всех возможных комбинациях.

Для трехжильного кабеля – три измерения, для четырехжильного – шесть, пятижильного – десять. В реальности реализовать эту проверку можно, имея в наличии кабель с отключенными жилами.

Отключать их для проверки после монтажа – операция сложная.

Измерение сопротивления изоляции кабельной линии

Поскольку в системах с глухозаземленной нейтралью нулевой рабочий и защитный проводники соединены между собой, то и прибор между ними покажет ноль.

Но, даже если отключить от объекта питающий кабель, все нулевые рабочие и защитные проводники, объединенные на шинах, покажут одно и то же сопротивление между собой. Если оно укладывается в норму, то все хорошо.

А если нет – придется их отсоединять от шин по очереди, следя за изменениями изоляции.

Упрощенный способ измерения для розеточных групп – измерить сопротивление фазного проводника от автоматического выключателя питания относительно нулевой и РЕ шины.

Читайте также:  Неисправности автоматических выключателей - советы электрика

Для осветительной сети все сложнее. Под фазным потенциалом при работе светильников оказывается участок от автомата питания до осветительного прибора, проходящий через выключатель.

Если не вывернуть лампу из светильника, прибор покажет его сопротивление. Поэтому при измерениях сопротивления изоляции осветительных сетей лампы выворачивают, а выключатели переводят во включенное положение.

Так тестируется участок, реально находящийся под напряжением в эксплуатации.

И не забываем про полупроводниковые ПРА. У них на входе выпрямитель. Чтобы его не повредить, провода от светильника отключают. Хотя современные мегаомметры, почуяв неладное, резко снижают испытательное напряжение до минимальной величины. Полупроводниковые элементы редко выходят из строя, но испытывать судьбу лишний раз не стоит.

Важно

Результаты измерений для бытовой электропроводки должны уложиться в предел 0,5 МОм. Все, что ниже этой планки, подлежит устранению. На самом деле, новые кабельные линии имеют сопротивление изоляции сотни и тысячи мегаом. Значения ниже сотни характерны для старой электропроводки, да еще и порядком изношенной.

Источник: http://electric-tolk.ru/izmerenie-soprotivleniya-izolyacii-elektroprovodki/

Блог

При выборе кабельной продукции для электропроводки, у большинства заказчиков, главный критерий покупки – низкая цена. Основная мотивация таких клиентов,  это нежелание переплачивать за материалы, которые будут замурованы в стены.

Они совсем не догадываются, что дешевые провода, как правило, производятся  с заниженными сечениями жил и  дешевой пожароопасной изоляцией.

Такие кабеля не смогут долго отвечать высоким требованиям по безопасности электропроводки в квартирах и других помещений. 

“Сомнительные кабели” могут  преподнести немалые сюрпризы своим владельцам: замкнутые или перебитые жилы,  заниженное сечение,  пожароопасная оболочка  и много других неприятностей.

В своей работе,  мне приходиться монтировать различные провода целыми километрами.  Поэтому знаю, что  только хороший кабель будет служить своими владельцам долгие годы.  К сожалению, в последнее время, найти качественный провод все труднее и труднее.  Уже давно при закупке кабельной продукции, я провожу обязательный  «тест на качество», о нем сегодня мой рассказ.

Проверка сечения жил у кабеля

Самый основной критерий для выбора кабеля это соответствующее сечение его жил. Большинство производителей занижают его до безобразия.

Для производителя выгода от этого очевидна, чем меньше меди в проводе, тем дешевле кабель на рынке и больше прибыль. Для нас (мастеров) это сильная головная боль.

Потому как мы подразумеваем, что если меняется проводка, то это на долго (не менее 25 лет), а с некачественным кабелем вся работа сводиться на нет.

Это одна из основных мотиваций, почему я рекомендую использовать на розетки сечение медного провода  2,5мм2, а не 1,5мм2. И пусть теоретики тыкают пальцем на красивые таблицы в книге, утверждая, что больше и не надо. Но на практике, немного перестраховки только на пользу. (Это больше относиться  к белорусам, так как европейцы и россияне уже давно придерживаются этого правила).

Еще отмечу, что  главной характеристикой для провода является измерение сопротивления жилы, а не его сечения. Измерить сопротивление жилы кабеля в обычных условиях  трудно, поэтому я отталкиваюсь всё-таки от фактического сечения токопроводящей жилы. Основной стандарт, который регламентирует данную характеристику, это  советский ГОСТ 22483 принятый в 1977 году. 

Сейчас полностью отсутствует контроль качества проводов,  из-за необязательного соблюдения ГОСТ. Практически каждый завод создает собственные ТУ и между ними могут быть значительные отличия. Как ориентиры вы можете взять на заметку несколько стандартов, которых придерживаются ответственные производители. Это ГОСТ 16442-80, ГОСТ Р 53768-2010 и ГОСТ Р 53769-2010.

Оперативно проверить качество кабеля на соответствие существующим стандартам и техническим регламентам,  можно благодаря приведенной ниже таблице. Для этого с помощью микрометра или штангенциркуля, а также весов, определите размеры и (или) массу  токопроводящей жилы и сравните с данными в таблице.

Совет

В таблице указаны  наименьшие значения из возможных. Все что ниже этих величин не может соответствовать ГОСТ  22483-77 и является некачественной продукцией. Следует помнить, что даже правильное соответствие сечение жилы может нарушать нормы по сопротивлению кабеля из-за добавления различного мусора (смесей или более дешевых металлов) в  его состав.

Определить фактическое сечение жилы можно с помощью формул:

Пример: Диаметр замеренной жилы составил 1,4 мм. В квадрате 1,4 превращается в 1,96 (1,4*1,4 =1,96) Получаем результат S = 0,785 * 1,96 = 1,53.

Иногда под настроение могу проверить качество жилы на излом, но это не основная проверка, поэтому описывать процесс не вижу смысла.

Проверка кабеля на обрыв и замыкание

После покупки кабеля  не поленитесь проверить его на обрыв и замкнутость проводов.  И неважно,  купили вы бухту или отрезок в несколько метров. Редко, но попадается брак. Поэтому лучше потратить немного времени для проверки целостности проводов, чем потом горевать с  замурованными и не работающими участками электропроводки.

Для выполнения этой проверки я использую мультиметр в режиме прозвонки. Практически все мультиметры в данном режиме оснащены звуковым оповещением.  

Проверка на обрыв заключается в прозвонке каждой жилы одинакового цвета, между собой  с двух  сторон кабеля. Желто-зеленый с желто-зеленым, синий с синим и т.д.  При отсутствии обрыва концы жилы должны прозваниваться.

Для определения замкнутости жил между собой, их следует прозвонить друг с другом. В этом случае жилы проводов не должны прозваниваться.

Чтобы не запутаться с проводами, и прозвонить все жилы (что очень актуально, когда жил много), следуйте простому правилу.  Соберите  все жилы в одну линию. Затем проверьте первую жилу со всеми остальными.

После проверки согните ее, чтобы она не мешала, и начинайте проверять вторую со всеми оставшимися. Повторите данную операцию до тех пор, пока не останется последняя жила.

После этого можно быть абсолютно уверенным в том, что все жилы кабеля были проверены на замыкание между собой.

Проверка изоляции кабеля

По новым стандартам (в Республике Беларусь они еще слабо действуют) при монтаже электропроводке в жилых помещениях и зданиях следует использовать силовой кабель, не распространяющий горение с низким дымо и газовыделением (ВВГнг-LS). Уже сталкивался и знаю, что на кабеле может быть написано что угодно, поэтому испытать изоляцию на горючесть никогда не помешает.

Сразу предупреждаю в квартире испытание не проводить! За запах и копоть, спасибо вам никто не скажет.

При проверке изоляции на горючесть, кабель ни в коем случае не должен загореться (т.е. изоляция должна сморщиваться, но не гореть). Если кабель загорелся, то испытания он не прошел. Если в процессе проверки возникнет сильная задымленность или почувствуете сильную вонь, то это тоже будет признаком дешевой изоляции.

В конце испытания кабель обычно выглядит так:

Толщина изоляции кабеля, тоже регламентируется (ГОСТ 23286), но ее я никогда не проверяю, так как приведенных выше испытаний более чем достаточно, чтобы быть уверенным, что кабель соответствует стандартам.

Вот и все что мне хотелось рассказать Вам о проверке кабелей и проводов. Возможно, провести все испытания  не получиться слишком быстро, но потраченное время стоит того. Лично я трачу на проверку бухты не более 5 минут. Всем спасибо за внимание, и удачи в покупке качественной продукции для электропроводки.

P.S. По просьбам читателей привожу производителей, продукцию которых я приобретаю. В основном это: “Кобринагромаш”, “Автопровод”, “Алюр”.

Источник: https://electroshaman.by/blog/39-kak-bystro-proverit-kachestvo-kabelya

Методика измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов

Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам

Данная методика предназначена для производства измерений сопротивлений изоляции электропроводок, электрооборудования (комплектных низковольтных устройств: ВРУ, щитков этажных и квартирных, и др.

), а также изолирующих полов и стен при сертификационных испытаниях электроустановок зданий с целью оценки качества изоляции элементов электроустановок и сравнения с нормами табл. 43 приложения 1 ПЭЭП и табл. 61 А стандарта МЭК 364-6-61.

В соответствии с этими нормативными документами норма сопротивления изоляции цепей электроустановки должны быть не менее 0, 5 мОм

Обратите внимание

Измерения сопротивления изоляции должны производиться согласно п. 612. 3 стандарта МЭК 364-6-61:

а) между токоведущими проводниками, взятыми по очереди «два к двум»,

б) между каждым токоведущим проводником и «землей».

Измерения должны проводиться при отсоединенных электроприборах, при снятых предохранителях, вывернутых лампах и т. д.

Если цепь имеет электронные приборы, то должно быть сделано только измерение сопротивления изоляции между фазными и нейтральными проводниками, соединенными вместе, и «землей».

Примечание: эта мера предосторожности необходима, т. к. выполнение испытаний без соединения токоведущих проводников может вызвать повреждение электронных приборов.

При измерении параметров изоляции электрооборудования следует учитывать требования п. 1. 20 приложения 1 ПЭЭП.

В соответствии с п.413.3 ГОСТ Р 50571.3-94 изолирующие (непроводящие) помещения, зоны, площадки имеют целью предотвратить одновременное прикосновение к частям, оказавшимся под разными потенциалами в случае повреждения изоляции токоведущих частей.

Требования считаются выполненными, если пол и стены помещения являются изолирующими и выполняется одно или несколько условий приведенных ниже:

а) открытые проводящие части и сторонние проводящие части, а также открытые проводящие части друг от друга удалены не менее 2м, а за пределами зоны досягаемости — 1,25 м;

Важно

б) установлены эффективные приборы между открытыми проводящими частями и сторонними проводящими частями;

в) сторонние проводящие части изолированы. Сопротивление изолирующего пола и стен, измеренное в каждой точке должно быть не ниже:

—       50 кОм при номинальном напряжении электроустановок не выше 500. В;

—       100 кОм при номинальном напряжении электроустановок выше 500 В.

В каждом помещении и для каждой поверхности в соответствии с п. 612.5 стандарта                МЭК 364-6-61 должны быть сделаны три измерения. Одно измерение должно быть выполнено примерно в 1 м от сторонних проводящих частей, находящихся в помещении. Другие измерения должны быть сделаны на большем удалении.

Сопротивление изоляции практически во всех случаях измеряется мегаомметром — прибором, состоящим из источника напряжения — генератора постоянного (или переменного с выпрямителем) тока, измерительного механизма (магнитоэлектрического логометра) и добавочных резисторов.

В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5).

Ф4101, Ф4102 — на номинальное рабочее напряжение 100, 500, 1000. В. и Ф. 4101, Ф4102 на напряжение 2500В. Мегаомметры серии Ф. 4100 — электронного типа с питанием от электросети (или 12В).

Мегаомметры выпуска последних лет; ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) сняты с производства, но допускаются к эксплуатации мегаомметры типа M l101 М, МС-05, МС-06.

Класс точности приборов должен быть не более 4.

Мегаомметры к схеме присоединяют гибкими одножильными проводами с сопротивлением изоляции не менее 100 Мом длиной 2-3 м, концы которых маркируются.

Совет

Концы присоединяемые к мегаомметру должны иметь оконцеватели, а противоположные — зажимы типа «крокодил» с изолированными ручками или специальными щупами.

При измерениях специальные провода не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей.

Читайте также:  Маркировка кабеля гост - советы электрика

При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) -к проводнику тока (см. рис. 1.1. а, б, в). Схема замещения при измерении сопротивления изоляции фазы относительно земли и других заземленных фаз представлена на рис. 1.2.

1.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

Перед началом измерения необходимо:

—               убедиться, что на испытуемом кабеле нет напряжения;

—               на 2-3 минуты заземлить токоведущие жилы для снятия с них возможных остаточных зарядов;

—               тщательно очистить изоляцию от пыли и грязи.

Выбрать соответствующий предел измерений (в соответствии с ожидаемой величиной сопротивления изоляции) и подвергнуть мегаомметры контрольной проверке, которая заключается в проверке показаний на шкале при разомкнутых и замкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «Бесконечность» , во втором — у нуля.

Как правило, измеряется сопротивление изоляции каждой фазы кабеля относительно заземленных фаз (см. рис. 1.1 а, 1.2).

Если измерения по этой схеме (сокращенный вариант — 3 замера) дадут неудовлетворительный результат, то необходимо измерить сопротивление изоляции каждой фазы относительно земли (остальные фазы не заземляются) — см. рис.1.

З-х и между каждыми двумя фазами (см. рис. 1.36). Всего выполняется 6 замеров для 3-х жильных кабелей и соответственно 4 и 8 для 4-х жильных.

Значениями сопротивлений изоляции, измеренные по схемам рис. 1.3, ближе к действительным и должны удовлетворять требованиям норм

Вместе с записью результатов в отчетных документах необходимо указывать схему, с помощью которых они получены.

Обратите внимание

Измерения (снятие показаний), следует производить при устойчивом положении стрелки прибора. Для этого нужно вращать ручку прибора со скоростью 120 об/мин.

Сопротивление изоляции определяется показанием стрелки прибора через 15 и 60 с. после начала вращения.

Если определение коэффициента абсорбции К абс не требуется, отсчет показаний производится после успокоения стрелки, но не ранее 60 с. от начала вращения.

При неправильно выбранном пределе измерения, необходимо снять заряд с испытуемой фазы, наложив заземление, переключить предел и повторить измерение на новом пределе. При наложении и снятии заземления пользоваться диэлектрическими перчатками.

При измерениях сопротивления изоляции кабелей на напряжение до 100. В. с нулевыми жилами необходимо помнить следующее:

Источник: https://www.etlpro.ru/metodiki-ispitanii/metodika-izmereniya-soprotivleniya-izolyatsii-provodov-kabeley-silovogo-elektrooborudovaniya-i-apparatov.html

Как проверить проводку на замыкание | Советы бывалого прораба

Короткое замыкание электрической цепи – прямое соединение проводников, находящихся под противоположными потенциалами. Например “+” и /или “фаза” – “ноль” (“земля”). КЗ происходит, потому что сопротивление цепи в точке соприкосновения находится очень близко к нулю.

При коротком замыкании выделяется огромное количество энергии, которую ни что не поглощает, поэтому эффект короткого замыкания выражается в яркой вспышке, звуковом эффекте и высокой температуре в точке замыкания. В результате короткого замыкания цепи скачкообразно вырастает ток.

Он может достигать нескольких сотен ампер, в зависимости от условий замыкания.

Что часто приводит к выходу из строя участка электропроводки, а не редко и к пожарам.

Причин для возникновения короткого замыкания несколько:

  1. Старость проводки и установленных элементов, например розеток. Со временем в розетках накапливается пыль и грязь, что может привести к короткому замыканию. Изоляция проводов тоже не вечна. Со временем она высыхает и теряет свои изоляционные свойства. Или же вовсе осыпается.

  2. Старость соединений в распределительных коробках. Скрутки, как бы хорошо они не были сделаны когда-то, со временем слабнут, что приводит к их нагреву из-за плохого контакта. Изоляционная лента, как и изоляция проводов, со временем стареет и утрачивает свои свойства.

  3. Слишком большая нагрузка в цепи, сечение провода определяет максимальную нагрузку, а значит и силу тока, которую можно к нему приложить. При нагрузке выше расчетной, провод начинает греться. Изоляция деформируется, а потом закипает. Со временем происходит короткое замыкание.

    Необходимо соблюдать основные правила пользования электроприборами.

  4. Наличие воды. Если в распределительную коробку или розетку попала вода, то в 98% случаев это приводит к короткому замыканию. Это происходит, потому что вода является очень хорошим проводником электричества.

  5. Короткое замыкание может произойти внутри электрического прибора, подключенного к розетке, или в патроне люстры.
  6. Исправная аппаратура защиты поможет избежать серьезных последствий от короткого замыкания.

Короткое замыкание, как его найти?

Поиск короткого замыкания начинают искать с розеток. Для этого из всех розеток вынимаются вилки всех электроприборов и выключаются все выключатели. После этого включается автоматический выключатель (меняется пробка).

Если короткое замыкание не пропало, то нужно поочередно открыть все розетки и коробки. При ремонте желательно заменить полки кабельные на новые, сейчас они производятся хорошего качества. Короткое замыкание чаще всего выдает себя нагаром, следами плавления металла, запахом.

Чаще всего короткое замыкание происходит в распределительных коробках,

Случается так, что видимых следов нет. Это означает, что короткое замыкание произошло в скрытых участках проводки. Что бы обнаружить подобное замыкание необходимо будет разобрать схему коробки. После этого снова включить автомат защиты.

Если замыкание пропало, то можно искать дальше по направлениям, которое питает эта коробка. Искать лучше с помощью омметра. На худой конец подойдет обычная лампочка на 2,5 вольта с батарейкой.

Важно

На замкнутом участке прибор покажет низкое сопротивление (до нескольких десятков Ом), а лампочка загорится. Поврежденный провод лучше заменить.

Источник: https://beybitblog.ru/kak-proverit-provodku-na-zamykanie/

Измерение сопротивления изоляции кабеля, Заметки электрика

Здравствуйте, читатели блога «Заметки электрика».

В прошлой статье про испытание кабельных линий я рассказывал Вам, что одним из пунктов испытания кабельных линий является измерение сопротивления изоляции кабеля.

Вот об этом мы подробно с Вами и поговорим. Рассмотрим как правильно произвести измерение сопротивления изоляции, как силовых, так и контрольных кабелей. А также познакомимся с методикой проведения этих замеров.

Подготовка к измерению сопротивления изоляции кабеля

Перед началом проведения работ по измерению сопротивления изоляции кабеля необходимо точно знать температуру окружающего воздуха.

С чем это связано?

А связано это с тем, что при отрицательных температурах, при наличии в кабельной массе частиц воды, эти частички будут находиться в замерзшем состоянии, т.е. в виде кусочков льда. Все Вы знаете, что лед является диэлектриком, т.е. не обладает проводимостью.

Поэтому при проведении измерения сопротивления изоляции при отрицательных температурах эти частички замерзшей воды выявлены не будут.

Второе, что нам необходимо для проведения измерения сопротивления изоляции кабельных линий, это наличие приборов и средств измерений.

Для измерения сопротивления изоляции кабелей различного назначения я и работники нашей электролаборатории используем прибор MIC-2500. Есть и другие приборы, но мы их используем несколько реже.

Этот прибор производства фирмы Sonel и с помощью него можно замерить сопротивление изоляции кабельных линий, проводов, шнуров, электрооборудования (двигатели, трансформаторы, выключатели и т.п.), а также произвести замер степени старения и увлажненности изоляции.

Хочу заметить, что прибор MIC-2500 входит в государственный реестр приборов, которые разрешены для измерения сопротивления изоляции.

Совет

Прибор MIC-2500 должен ежегодно сдаваться в государственную поверку. После прохождения поверки на прибор ставят голограмму и штамп о прохождении поверки. В штампе указывается серийный номер прибора и дата следующей поверки.

Соответственно, что производить измерение сопротивления изоляции необходимо только исправным и прошедшим поверку прибором.

Нормы сопротивления изоляции для различных кабелей

Перед тем, как перейти к нормам сопротивления изоляции кабелей, необходимо как то их классифицировать.

Я Вам предлагаю свою упрощенную классификацию кабелей.

Кабели по назначению делятся на:

  • высоковольтные силовые выше 1000 (В)
  • низковольтные силовые ниже 1000 (В)
  • контрольные и кабели управления, будем их называть просто контрольными (сюда входят вторичные цепи РУ, цепи питания электроприводов выключателей, отделителей, короткозамыкателей, цепи управления, цепи защиты и автоматики и т.п.)
  • др.

Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных силовых кабелей производится мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются мегаомметром на напряжение 500-2500 (В).

Источник: http://vizada.ru/2018/03/10/izmerenie-soprotivleniya-izolyacii-kabelya-zametki-elektrika/

Как проводится измерение сопротивления изоляции кабельных линий мегаомметром

Кабельные линии перед началом работ, а также с определенной периодичностью, проверяются на эксплуатационные характеристики, одна из которых сопротивление изоляции.

Именно данная характеристика определяет, сможет ли кабель выдерживать токовые нагрузки, не перегреется ли он и не прогорит ли. Проверка сопротивления изоляции производится мегаомметром.

Прибор этот не самый сложный в плане использования, но некоторые моменты применения требуют знаний. Итак, как провести измерение сопротивления изоляции кабельных линий мегаомметром.

Существуют определенные нормативы, которые распределены по классификации самих кабельных линий, представленные в основном тремя позициями:

  • силовые высоковольтные, где напряжение в системе превышает 1000 вольт;
  • силовые низковольтные – это ниже 1000 вольт;
  • контрольные системы и управления.

Кабели двух первых позиций измеряются мегаомметром при напряжении 2500 вольт. Контрольные при напряжении от 500 до 2500 вольт. При этом у каждой позиции свои нормы.

  • У первой позиции (высоковольтных) сопротивление изоляции находится в пределах не меньше 10 МОм.
  • У низковольтных не ниже 0,5 МОм.
  • У контрольных не ниже 1,0 МОм.

Необходимо учитывать тот факт, что измерение сопротивления изоляции должно проводиться с учетом температурного режима, при котором кабельные системы эксплуатируются и тестируются.

Все дело в том, что в линии иногда находятся капли влажности, которые при низких отрицательных температурах превращаются в льдинки.

А всем известен тот факт, что лед является диэлектриком, то есть, при проведении измерения он (лед) выявляться не будет.

Как измеряется сопротивление мегаомметром

Измерение сопротивление изоляции мегаомметром любых видов кабельных линий производится практически одинаково с некоторыми специфичными различиями. Чтобы понять, какие отличия есть в каждом случае, разберем их все три по отдельности.

Измерение высоковольтных линий

Итак, в первую очередь кабель проверяется на отсутствие на нем напряжения. Для этого используются специальные указатели высокого напряжения. После чего сам измерительный прибор подключается к жилам со стороны, где проверяется изоляция.

С другой стороны жилы разводятся на определенное расстояние, узаконенное ПУЭ. Кстати, именно с этой стороны необходимо поставить человека, который будет выполнять функции сторожа, чтобы любопытные не решили потрогать торчащие провода голыми руками.

Обязательно везде вывешиваются плакаты о том, что проводятся испытания.

Источник: http://OnlineElektrik.ru/elaboratoriya/eizmereniya/izmerenie-soprotivleniya-izolyacii-kabelnyx-linij-megaommetrom.html

Проверка сопротивления изоляции проводов, проведение и контроль замеров – ЭНЕРГОЛЮКС

В любом электротехническом оборудовании проверка сопротивления изоляции проводится при его выпуске, вводе в эксплуатацию, а также при приемо-сдаточных испытаниях после окончания работ по прокладке электрических сетей в новом здании. Со временем материалы теряют свои изоляционные свойства. Именно по этой причине необходим контроль сопротивления изоляции в электротехнических установках, то есть замеры сопротивления изоляции должны проводиться регулярно.

Проверка сопротивления изоляции проводов помогает выявить отклонение данного параметра от нормы, а соответственно, избежать выхода из строя электрооборудования в результате возгорания электропроводки или короткого замыкания, и защитить людей от поражения электрическим током. Таким образом, регулярные замеры сопротивления изоляции позволяют предотвратить аварийные ситуации.

Значение сопротивления изоляции указывают в мегаомах (Мом). Соответственно, проведение замеров сопротивления изоляции осуществляется с использованием мегомметров. Для проведения таких работ необходим допуск. Поэтому проверка сопротивления изоляции проводится специальными электроизмерительными лабораториями.

Компании, предлагающие услуги электролабораторий, имеют укомплектованный штат квалифицированных специалистов со всеми необходимыми допусками. Процедура измерения сопротивления изоляции регламентируется ГОСТ 3345-76. Она предусматривает подключение к жилам кабельной линии клемм мегомметра и подачу высокого напряжения.

Во время проверки сопротивления изоляции вся нагрузка должна быть отключена.

Сопротивление изоляции для участка цепи определяют по закону Ома как отношение напряжения, которое приложено к цепи, к току, вызвавшему это напряжение. Однако данное значение не является постоянным. Оно зависит от влажности и температуры.

По этой причине проверка сопротивления изоляции проводов, которые проложены в земле, как правило, проводится в период максимальной влажности грунта. Значение сопротивления изоляции в норме, если оно не ниже значений, указанных в ПУЭ и ПТЭЭП.

Напряжение, генерируемое мегомметром, выбирают в зависимости от напряжения, на которое рассчитана электросеть. Так, если напряжение цепи не превышает 1000 В (к примеру, цепи управления или тепломеханики), то мегомметр имеет напряжение 1000 В.

В случае если цепи рассчитаны на напряжение свыше 1000 В (обмотки трансформаторов, силовые кабели и т.п.), то в ходе проведения замеров сопротивления изоляции на них подается 2500 В.

Обратите внимание

При проверке сопротивления изоляции проводов испытательное напряжение выбирают исходя из сечения провода: сечение до 16 мм2 – 1000 В, 16 мм2 и более – 2500 В.

По завершении измерительных работ составляется протокол сопротивления изоляции, в который записывают значения измерения сопротивления. Такой протокол должен хранится в электролаборатории не менее 5 лет.

Периодичность контроля сопротивления изоляции установлена ПТЭЭП (приложение 3.1). В частности, замеры сопротивления изоляция электропроводки, в том числе осветительной сети, на особо опасных объектах проводят ежегодно. В остальных случаях проведение замеров сопротивления изоляции осуществляется раз в 3 года.

Проверка электрического сопротивления изоляции кранов и лифтов проводят раз в год, а контроль сопротивления изоляции электротехнического оборудования (переносные электроприемники, сварочные аппараты) проводят раз в полгода.

Несоблюдение сроков проведения замеров сопротивления изоляции не только увеличивает вероятность опасных и аварийных ситуаций, но и влечет за собой административные санкции согласно действующему законодательству России.

Источник: https://www.enelux.ru/proverka_soprotivleniya_izolyacii/

Измерение сопротивления изоляции электропроводки

Для контроля надежности изоляции электрических проводов осуществляют измерение величины сопротивления изоляции  Единицей измерения является ОМ, для удобства применяют более крупную единицу – мегаОМ.

  Существуют приборы для автоматического измерения и контроля уровня сопротивления изоляции. Такие приборы в основном устанавливаются на высоковольтном оборудовании, на подстанциях. При обнаружении недостаточного уровня сопротивления изоляции прибор сигнализирует об этом.

  На предприятиях контроль за уровнем сопротивления изоляции осуществляют специалисты лицензированных организаций.

  При сдаче- приемке нового жилого дома  так же приглашаются лицензированные специалисты, которые проверяют надежность изоляции электрического оборудования в помещениях и выдают письменное заключение о его безопасности.

  Но, ничто не вечно под луной, и изоляция электропроводки со временем ветшает. Так же возможны ее механические повреждения.

  Процесс измерения сопротивления изоляции электрических проводов  электромонтеры называют “прозвонить проводку”, если измеряется сопротивление изоляции электродвигателя, соответственно говорят – “прозвонить двигатель”. В бытовых условиях это можно сделать прибором, который называется в соответствии со своим предназначение – мегаомметр ( на фото).

Важно

Так же существуют приборы, которые дают возможность измерить не только уровень сопротивления изоляции, но и другие параметры, называется он тоже в соответствии со своим предназначение – мультиметр ( на фото мультиметр  М890С).

Эти приборы бывают электронными – с экраном и стрелочные, электронные удобнее и современнее.

  “Прозвонить проводку” в собственном доме доступно и не специалисту, для этого достаточно иметь один из названных приборов.

Перед измерением надо обесточить помещение – выключить автоматические выключатели, которые обычно находятся на лестничной площадке, выкрутить все лампочки из осветительных приборов в квартире, вынуть из розеток вилки всех электроприборов ( телевизор, холодильник  и так далее).

После этого, с помощью прибора измерить величину сопротивления изоляции в нескольких местах – в розетках, в патронах электроламп, абсолютно все проверять не нужно, но и только одной розетки не достаточно.

   Уровень сопротивления изоляции в квартире по нормам эксплуатации электрооборудования должен быть выше 1 мегаОМа , то есть один и больше – нормально, если меньше стоит задуматься о замене электрических проводов во время ближайшего ремонта. Сделать это стоит как можно скорее.

Источник: http://poremontu.ru/blogs/yuliya33/izmerenie-soprotivleniya-izolyatsii-elektroprovodki

Проверка сопротивления изоляции проводов и кабелей

Большинство проводников, используемых в тех или иных целях, имеют вид проволоки различной толщины, покрытой слоем изоляции.

Если сопротивление идеального проводника должно быть бесконечно малым, то сопротивление идеальной изоляции должно быть бесконечно большим.

Однако реалии таковы, что сопротивление у изолирующего слоя не настолько велико, чтобы его нельзя было измерить. При определённых условиях через него течёт так называемый «ток утечки».

Совет

Его величина может быть недопустимо большой. Постепенно, однако, довольно быстро свойства изоляционного покрытия могут существенно ухудшиться. При этом какое-либо дополнительное внешнее воздействие, например, механическое, может нарушить целостность ослабленной изоляции.

Далее высока вероятность короткого замыкания в месте повреждения, а также её возгорание из-за высокой температуры в зоне короткого замыкания.

Поэтому надо периодически проверять состояние изоляции на предмет величины токов утечки в ней для предотвращения разрушительных последствий от её деградации.

Производители кабельно-проводниковой продукции заявляют весьма долгий срок службы своих изделий – до десяти лет или дольше. Но всё зависит от соблюдения условий эксплуатации, рекомендуемых этими производителями. А поскольку почти всегда свойства изоляционного покрытия ухудшают

  • попадание прямых солнечных лучей;
  • перепады с повышением напряжения;
  • температурные колебания;
  • свойства окружающей среды, ускоряющие старение изоляции;
  • мельчайшие механические повреждения

Срок нормального функционирование получается меньше заявленного производителем.

Проверка мегомметром

В большинстве случаев, проверить состояние изоляции можно используя разновидность тестера – мегомметр. Это специализированный прибор, который сделан именно для этого. При его использовании создаётся электрическая цепь, в которой включён воображаемый резистор численно равный величине сопротивления изоляции в месте измерения.

ЭДС в такой цепи создаёт встроенный в мегомметр генератор, развивающий достаточно высокое напряжение. Его величина может достигать трёх киловольт. Результаты измерений мегомметром позволяют определить параметры состояния изоляционного покрытия, по которым делаются расчёты коэффициентов для оценки перспектив дальнейшего использования тестируемых проводов и кабелей.

Цель выполняемых измерений

Технический паспорт содержит информацию о сопротивлении изоляции проводов и кабелей. Поэтому при её регулярном контроле можно обнаружить изменения, происходящие с ней в существующих условиях эксплуатации. Получаемые по результатам контроля данные позволяют предотвратить такие события как удар током при контакте с проводом или кабелем, перегрев или воспламенение провода или кабеля.

Если выполнение контроля требует определённых времени и средств, то последствия аварий от пожаров или ударов током получается намного более ощутимыми. Поэтому важно своевременно выявить те участки с проводами или кабелями, которые уже пребывают в состоянии, требующем их замены по причине износа изоляционного слоя. И эту замену необходимо сделать до появления проблем с ним связанных.

В электрических сетях особенно с напряжением более 1000 Вольт применяется много электрооборудования, в котором используются масло и прочие материалы с очень мощным горением.

Например, распределительная подстанция, в которой в каком-то одном месте воспламенилась изоляция, может быстро стать одним большим пожаром.

А это значит, что противопожарная безопасность всей подстанции имеет связь с состоянием изоляционного слоя проводов и кабелей проложенных в ней.

Данные результатов контроля их изоляции подлежат учёту в специальных протоколах. Они составляются в ходе выполнения необходимых измерений измерительными лабораториями и только в таком случае могут предъявляться соответствующим государственным контролирующим органам выполняющим проверку объектов на противопожарную безопасность. Протоколы, составленные иным путём, не имеют юридической силы.

Периодичность проверки

Количество проверок сопротивления изоляции связано со спецификой назначения проводов и кабелей.

Если рассматривать провода электропроводки, прокладываемые в жилых и производственных помещениях, проверить их надо не менее двух раз.

Первый раз проверку надо сделать после того как провода проложены и закреплены в стене. Этот этап проверки даёт возможность найти микроповреждения изоляции. Затем наносится первый слой штукатурки.

Обратите внимание

После того как слой высохнет, выполняется второй этап проверки проводки. Если на этом этапе будет обнаружен один или несколько участков проводки с повреждениями изоляционного слоя по слишком значительному току утечки, их можно будет заменить до нанесения чистового слоя штукатурки.

В общем случае на промышленных предприятиях, где работают электроустановки с напряжением до 1000 Вольт, Правилами технической эксплуатации электроустановок потребителей предписано следующее.

  • Периодичность замера изоляции электропроводки и осветительных сетей один раз в три года для всех помещений за исключением особо опасных помещений и оборудования установленного вне помещений, для которых проверка необходима один раз в год.

В упомянутых Правилах есть таблица, изображение которой показано далее для более детального ознакомления.

Но поскольку минимальная периодичность проверки проводов и кабелей составляет один раз в год, это не является ограничением.

На предприятиях, в зависимости от условий в тех или иных помещениях, устанавливаются собственные правила более частых проверок изоляции.

Например, в структурах образования, здравоохранения, общественного питания, торговли и некоторых других внутренними приказами устанавливается периодичность проверок сопротивления изоляции один раз в шесть месяцев.

Другие приборы для проверки изоляции

Мегомметр является измерительным прибором, который уже много лет используется для измерения сопротивления изоляционного слоя проводов и кабелей.

Но он громоздкий и неудобный в использовании, поскольку в процессе проверки изоляции необходимо вращая рукоятку вручную вырабатывать высокое напряжение для «прозвона» изоляционного слоя.

Надёжность и долговечность мегомметра объясняют использование этих приборов и в наше время.

Важно

Современные измерители сопротивления изоляции это цифровые приборы, которым не требуется высокое напряжение как в мегомметре. Они позволяют бесконтактным способом проверять не только изоляционный слой, но и другие параметры провода или кабеля – напряжение, ток, частоту. Такие приборы показаны на изображении ниже:

В домашних условиях проверка и измерение сопротивления изоляции проводов и кабелей также должна выполняться периодически.

Возможно ухудшение её свойств от повышенной влажности и сырости, повреждения при выполнении каких-либо работ. Например, установка шурупов или гвоздей в стене и повреждение электропроводки ими.

Изоляцию могут повредить грызуны. В конце концов, всегда присутствует фактор её старения.

Для проверки можно использовать мультиметр (тестер) в котором есть диапазон измерения в несколько мегом. Проверять изоляцию надо только при отключенном напряжении.

Лучше всего вынуть пробки на щитке и только после этого начинать проверку.

Если прибор показывает подозрительно небольшое сопротивление изоляции, то дополнительный «прозвон» лучше всего выполнить специальным прибором типа мегомметра.

Контроль сопротивления изоляции хотя и требует затрат определённых усилий и времени, но позволяет предотвратить пожар, последствия которого будут несравнимо большими.

Источник: http://podvi.ru/osnovy-elektromontazhnyx-rabot/soprotivlenie-izolyacii.html

Ссылка на основную публикацию
Adblock
detector