Назначение трансформатора тока – советы электрика

Что такое трансформатор тока и как он работает?

Для моделирования процессов, протекающих в электрических установках, а также безопасного измерения требуется проведение преобразований одних электрических величин в другие, аналогичные, имеющие измененные пропорционально значения.

Трансформаторы тока (ТТ) работают на основе электромагнитной индукции, закон которой действует в магнитном и электрическом поле.

Он проводит преобразование вектора тока первичного значения с соблюдением пропорции в его пониженное значение с точной передачей угла и величины по модулю.

Обратите внимание

Трансформатор, в котором вторичное значение протекающего тока пропорционально первичной величине тока, имеющего сдвиг, равный нулю, когда он правильно включен, — это трансформатор тока.

У ТТ первичная обмотка включается последовательно в цепь на токопровод, а вторичная обмотка имеет нагрузку в виде измерительных приборов для создания условия протекания электротока по ней, который по величине пропорционален величине тока в первичной обмотке.

Трансформаторы тока

Необходимо отметить, что в ТТ (высокого напряжения) первичная обмотка имеет изоляцию от вторичной обмотки, так как она одним концом заземляется, и потенциал во вторичной обмотке приравнивается к потенциалу земли.

Существует разделение токовых трансформаторов на измерительные и защитные, бывают случаи, когда эти функции в ТТ совмещаются. Трансформатор тока предназначен для передачи измеряемых величин измерительным приборам.

Место установки ТТ такого вида на высокой стороне, когда нет возможности провести измерения величин непосредственно приборами измерения, когда высокий ток или напряжение.

Приборы измерений (обмотки ваттметров, амперметр, счетчик учета, другие приборы) подключаются к вторичной обмотке ТТ. Назначение трансформатора тока заключается в следующем:

  • возможность преобразования любой величины переменного тока в значение, возможное для измерения приборами стандартного измерения величин;
  • безопасность персонала, проводящего измерения, от доступа к высокому напряжению.

Защитные трансформаторы тока назначение имеют для передачи информации измерений в приборы и устройства управления и защиты, они обеспечивают:

  • возможность преобразования любой величины переменного тока в значение для обеспечения работы релейной защиты;
  • безопасность персонала, который работает с релейной защитой, от доступа к высокому напряжению.

Как работает устройство?

Принцип работы трансформатора тока

Через первичную обмотку токового трансформатора с количеством витков w1 и сопротивлением z1 протекает ток трансформатора I1, этот процесс формирует магнитный поток Ф1, который улавливает сердечник трансформатора (магнитопровода), расположенный под 90 градусов к вектору тока I1. Такое положение сердечника не допускает потерь электроэнергии, когда происходит ее преобразование в магнитную энергию.

Когда поток Ф1 пересекает обмотку с витками w2, он наводит в ней ЭДС (Е2), которая воздействует на обмотку, и в ней возникает ток I2, который протекает по вторичной катушке с сопротивлением z2, и сопротивление подключенной нагрузки (z нагрузки). Во вторичной цепи происходит падение напряжения на зажимах U2.

В данной схеме принципа действия трансформатора тока показано, как находится коэффициент трансформации — это значение К1, которое задается при разработке устройства и тестируется на заводе.

Важно

Класс точности определяется метрологической инстанцией и показывает реальные значения трансформации.

На практике этот коэффициент определяют по номинальным параметрам, так, 1000/5 говорит о том, что при токе в 1000 ампер первичной обмотки вторичная обмотка будет иметь 5 ампер нагрузки.

Как классифицируются токовые трансформаторы?

Специалисты классифицируют токовые трансформаторы, предназначенные для защиты и измерений, по выраженным признакам:

  1. Размещение и установка, когда токовые трансформаторы могут монтироваться:
  • на открытой площадке — ГОСТ15150-69, категория размещения №1;
  • закрытое помещение — ГОСТ15150-69;
  • встраиваемые токовые трансформаторы в электрическое оборудование — ГОСТ 15150-69;
  • токовые трансформаторы для установки в специальном оборудовании (шахты, корабли, электропоезда, другое оборудование).
  1. Метод установки: трансформаторы тока проходные, которые устанавливаются в стеновых проемах или других конструкциях, опорные ТТ устанавливаются на плоскости, встраиваемые токовые трансформаторы в щиты электрооборудования.
  2. Коэффициент трансформации. Может быть один или несколько, которые получаются изменением числа витков первичной и вторичной обмотки ТТ.
  3. Количество ступеней трансформации: каскадные, одноступенчатые.
  4. Количество витков в первичной обмотке: многовитковые токовые трансформаторы, одновитковые ТТ.

Схема токового трансформатора

Одновитковые трансформаторы тока имеют стержневую первичную обмотку (3 трансформатор), а также могут иметь U-образную форму (4 трансформатор).

Назначение и применение

Промышленное производство выпускает токовые трансформаторы для решения задач учета электроэнергии, с целью защиты силовых трансформаторов и линии передачи электрической энергии.

Выносные токовые трансформаторыНа оборудовании применяются конструкции встроенных токовых трансформаторов, для размещения непосредственно на силовом объекте, устройства со стороны 110 кВ

Высоковольтные токовые трансформаторы вместо изолятора применяют специальное трансформаторное масло.

Конструкция трансформатора тока марки ТФЗМ для работы на линии 35 кВ

Трансформаторы тока на линии до 10 кВ в качестве изоляционного материала между обмотками применяют твердые изоляционные материалы.

ТПЛ-10

Возможные неисправности

Наиболее частые неисправности в токовых трансформаторах, по мнению специалистов, следующие:

  • нарушение изоляции в обмотках, когда изделие работает под нагрузкой из-за тепловой перегрузки, механического удара, из-за плохого монтажа;
  • межвитковое замыкание в ТТ, происходит утечка тока, возможность КЗ (короткого замыкания).

Для улучшения эффективной работы рекомендуется делать поверку работы ТТ при помощи тепловизора, когда проявляются некачественные контакты и достигается понижение температурного режима работы оборудования. Проверку ТТ на КЗ должны периодически делать работники лабораторий. Эти действия включают:

  • снятие характеристик по току и напряжению;
  • нагрузка ТТ посторонним источником;
  • снятие параметров в действующей схеме;
  • проведение аналитических исследований по выявлению коэффициента трансформации.

Об обмотке

Требования к конструкции

Когда проектируются токовые трансформаторы, должны соблюдаться следующие требования:

  1. Выводы первичной обмотки делаются по ГОСТ 10434-82, для ТТ наружного исполнения учитывается ГОСТ 21242-75. Выводы вторичной обмотки делаются также по ГОСТ 10434-82, они могут располагаться на конструкции изделия, в который встраивается токовый трансформатор. Для наружного исполнения выводы контактов вторичной обмотки должны закрываться специальной крышкой, в коробке, которая не пропускает влагу.

Маркировка выводов:

  1. Когда в качестве изолятора используется трансформаторное масло, этот вид ТТ должен иметь компенсатор (расширитель), а также указатель количества масла по уровню. Масло расширитель должен иметь достаточный объем для обеспечения работы ТТ во всех режимах и нужного для этого количества масла.
  2. В токовых трансформаторах с указателем количества масла его размер должен быть достаточным для определения объема масла в расширителе с расстояния, безопасного для здоровья персонала.
  3. Если токовый трансформатор весит больше 50 кг, он обязательно оборудуется креплением для подъема. Существуют марки ТТ, в которых нельзя сделать крепления, для этого в документации указывается место для его охвата.
  4. В ТТ, имеющем на вторичной обмотке напряжение больше 350 вольт, должна быть предостерегающая надпись: «Опасно! Высокое напряжение!».
  5. Если токовый трансформатор не встроенной конструкции, он оборудуется контактной площадкой для заземления. Возле зажима заземления устанавливается специальный знак ГОСТ 21130-75.

Как выбрать токовый трансформатор для прибора учета электроэнергии

Для выбора нужного вам ТТ необходимо руководствоваться следующей информацией:

  • знать параметры сети, номинальное напряжение;
  • какой будет ток в первичной и вторичной обмотке ТТ;
  • какой у токового трансформатора коэффициент;
  • класс точности изделия;
  • конструкция токового трансформатора.

Когда определяются параметры напряжения, надо принимать максимально возможное значение напряжения. Для счетчика 0,4 кВ рекомендуется токовый трансформатор 0,66 кВ.

Как подключить счетчик через токовый трансформатор

Величина тока на вторичной обмотке — около 5 ампер, а ток первичной обмотки можно рассчитать по коэффициенту трансформации. Необходимо учитывать всю нагрузку, выбирая коэффициент трансформации, допускается подключение ТТ с завышенным коэффициентом трансформации.

Выбор ТТ по классу точности зависит от цели, в которых используется изделие, коммерческий учет рекомендует класс точности не ниже 0,5S, а для условий технического учета достаточная точность — 1S.

Вывод

Схема замещения ТТ позволяет определить его точность, кроме того, используя схему замещения токового трансформатора можно описать все процессы, протекающие в нем, можно построить векторную диаграмму, но необходимо учесть разницу на намагничивание сердечника вторичной обмотки. Чем больше отклонения в замещенной схеме, тем меньше класс точности ТТ.

Источник: https://domelectrik.ru/oborudovanie/transformator/tok

Трансформатор тока- устройство и работа- видео!

Решил написать очередную статью о трансформаторах тока.

Ранее я уже объяснял что такое коэффициент трансформации ТТ, сейчас же в продолжении- объясню принцип действия ТТ и его устройство.

Речь буду вести о ТТ на 0,4кВ, то есть что применяются допустим в трехфазных щитах учета с пятиамперными счетчиками электроэнегрии.

Так же заснял на видео как я “мучял” трансформатор тока, проводя над ним испытания)))

Видео не редактировал и ничего не обрезал, дубль был один и единственный, поэтому местами может показаться немного затянутым, но- судить вам, дорогие друзья!

В видео вы узнаете: Как работает трансформатор тока? Что такое коэффициент трансформации? Вторичная обмотка трансформатора тока, как он устроен и основные рабочие характеристики.

Видео- в конце статьи!

Что такое трансформатор тока(далее-ТТ) и вообще- для чего он?

Само название говорит за себя- он трансформирует, то есть преобразует ток. По сути является источником тока. Естественно- переменного тока.

Причем работает только на понижение тока, повышающих ТТ просто не существует.

А зачем нам ток? Есть же понижающие трансформаторы напряжения, которые дают нам в дома  220 Вольт и мы пользуемся электроэнергией благополучно и вроде никакого больше тока нам не надо.

Нам- простым потребителям конечно ток в чистом виде не нужен, а вот различная автоматика, электроизмерительные приборы, релейная защита без него просто работать не будет.

Например если убрать ток с токовых катушек электросчетчика- он не будет считать киловатты, именно так некоторые останавливают счетчики.

Так вот, что бы измерять ток больших значений- 100, 200 и даже 1000 Ампер и предназначены ТТ.

Если без них- то амперметры пришлось бы делать размером с колесо легкового автомобиля а то и больше!

Например на подстанциях для прохождения тока в 1000 ампер делают алюминиевые шины шириной в ладонь взрослого человека, а это 8-12 см!

И вот такие шины или провода пришлось бы присоединять к амперметру для измерения большого тока если не применять ТТ!

Совет

А так- мы имеем щитовые приборы= амперметры, ваттметры, варметры совсем небольшого размера.

Это первое свойство ТТ- понижать ток до удобных для измерения значений.

На подстанциях и электростанциях то же применяются ТТ- и в сети 10кВ, и в 35 и так делее- 110,220,500 киловольт.

Тут уж без ТТ совсем не обойтись! Мало того что первичный ток большой, так еще и очень опасное высокое напряжение на проводах и никакой изоляцией от него не убережешься.

Я даже представить себе не могу как можно было бы измерить ток без ТТ например на подстанции 500 киловольт! Это же какой амперметр надо было бы соорудить?! С какой изоляцией!

Из этого вытекает второе свойство ТТ:  изолирует приборы и людей от высокого напряжения.

Устроен ТТ очень просто: первичная обмотка большого сечения (иногда просто- алюминиевая шина); магнитопровод, состоящий из множества тонких пластин электротехнической стали;

Читайте также:  Что означает l и n в электрике - советы электрика

вторичная обмотка- наматывается на магнитопровод.

Ну и собственно- сам корпус или основание. Вот и все устройство.

Магнитопровод набран из тонких листов для снижения воздействия вихревых токов внутри стали, возникающих при появлении магнитного поля.

Работает ТТ (как и все трансформаторы) благодаря явлению взаимоиндукции, это замечательное свойство есть только у переменного тока.

Обратите внимание

При прохождении тока по первичной обмотке в сердечнике магнитопровода образуется магнитный поток и он в свою очередь индуцирует во вторичной обмотке вторичный ток, который гораздо меньше по значению и прямо пропорционален изменению первичного.

То есть если ток в первичной обмотке изменился в два раза- во вторичной тоже в два. Если в три- во вторичной обмотке так же в три.

Небольшая погрешность конечно есть, например для ТТ у измерительных приборов в нормальном режиме различие тока между первичным и вторичным не более 0,5% (естественно с учетом коэффициента трансформации).

То есть ТТ имеют класс точности 0,5.

Важная деталь- ТТ работают в режиме короткого замыканя! 

Вторичная обмотка у них либо закорочена перемычкой(если не используется) или подключена на нагрузку с очень низким сопротивлением, близким к нулю или по крайней мере несколько Ом.

При высоком сопротивлении нагрузки вторичной обмотки ТТ начинает врать, а так же происходит его нагрев что ни к чему хорошему не приводит…

Так же вторичная обмотка обязательно заземляется!

Один из выводов обмотки подключается к заземляющему устройству. Это делается для безопасности обслуживания вторичных токовых цепей.

А на ПС с высоким напряжением этим еще снимается статический заряд с токовых цепей.

Итак, что должен знать каждый электрик:

-Режим работы ТТ- режим короткого замыкания

-Токовые цепи вторичной обмотки ТТ должны быть заземлены

-ТТ выбирается по коэффициенту трансформации

А сейчас- ВИДЕО:

 Узнайте первым о новых материалах сайта!

Просто заполни форму:

Источник: http://ceshka.ru/baza_znanyi/transformator-toka-ustroystvo

Трансформаторы тока и напряжения: назначение, как выбрать, подключение

Для нормализации электрической энергии, поступающей к дому или квартире, используются различные устройства. Предлагаем рассмотреть, как работают измерительные трансформаторы тока постоянного и переменного, их назначение, схема подключения, принцип работы и советы по выбору.

Общие понятия

Трансформатор тока (ТТ) маркировка ГОСТ 7746-2001 – это устройство является одним из видов «измерительного трансформатора», который предназначен для получения переменного тока в его вторичной обмотке, где величина преобразованного напряжения пропорциональна текущей измеряемой величине. Номинальная мощность трансформаторов может быть 25, 40, 63, 100, 160 кВА.

Трансформаторы тока, у которых класс точности 0,2; 0,5; 1; 3; 10 могут снизить высокие проходные токи напряжения на более низкие, этим они обеспечивают удобный способ безопасного контроля электроэнергии в переменной линии передачи с использованием стандартного амперметра. Принцип действия трансформатора тока ничем не отличается от обычного.

Существуют разные трансформаторы, типы приборов с различными пропускными способностями (суммирующий СЭЩ, ТТИ-200 5, 5 5, 300 5, 0 66, 1 1, 400 5, 150 5, ТК 20, опорный ТОЛ 10,  ТВЛМ, ABB, ИЭК, ТЗЛМ, ТЛК, ТСН, ТФЗМ, ТЛМ, ТЛО, ТОП, ТПЛ, ТПОЛ).

Фото – Трансформатор тока

Видео: устройство трансформатора тока ТФРМ 750

Как работает устройство и конструкция трансформаторов

Первичная обмотка включения может быть либо плоской, либо представлять собой ролик из толстого провода, обернутого вокруг сердечника, проводника или шины через центральное отверстие.

Благодаря такой конструкции, трехфазный трансформатор переменного тока имеет первичную обмотку с минимальным количеством витков, что положительно влияет на эффективность работы, в частности, коэффициент трансформации.

Вторичная обмотка может иметь большее число витков катушки. Они намотаны на ламинированную основу магнитного материала с низкими потерями, который имеет большую площадь поперечного сечения.

Важно

Плотность магнитного потока является низкой, при этом используя гораздо меньшую площадь поперечного сечения проволоки, номинальный ток практически не теряет своего напряжения.

Эти вторичные обмотки обычно рассчитаны на стандартный показатель 1 Ампер или 5 Ампер. Это хорошо демонстрирует векторная диаграмма:

Фото – Векторная диаграмма

Виды трансформаторов

Всего есть три основных типа трансформаторов тока:

  1. Сухие – это трансформаторы первичной обмотки, физически последовательно соединены с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента трансформации трансформатора.
  2. Тороидальные трансформаторы – они не содержат первичную обмотку. Вместо этого линия, которая несет ток, протекающий в сети, проводит его через специальное «окно» или отверстие тороидального трансформатора. Некоторые торроидального типа имеют «раздвоенное ядро», которое позволяет им открываться, работать и закрываться, не отключая напряжения цепи, к которой они подключены. Они широко используются для защиты от замыкания в проводке частного дома или квартиры многоэтажки.
  3. Высоковольтные масляные трансформаторы (элегазовые). Эти устройства для нормализации тока используют кабель или шинные передатчики главной цепи первичной обмоткой, их периодичность эквивалентна одному ходу стандартного сухого трансформатора. Они полностью изолированы от высокого рабочего напряжения системы, как правило, присоединены болтами к нагрузочной системе устройства.
  4. Также они могут быть разборные, они же разъемные, встроенные, оптические, и т.д.

Трансформаторы тока и напряжения могут уменьшать или увеличивать текущие уровни от тысячи ампер к стандартному выходу, в зависимости от марки (Circutor, ASK, Schneider Electric, АВВ, Армавир) и типа, они могут быть рассчитаны на 6 кв, 630 кв, 10 кв.

Таким образом, малые и точные приборы и устройства управления могут использоваться с КТ, потому что они изолированы от любых линий электропередач высокого напряжения.

Есть множество приборов учета, которые используются для трансформаторов тока, начиная с амперметра и ваттметром, и заканчивая специальными выключателями нагрузки, УЗО-автоматами и т.д.

Фото – Трансформаторы тока тор

Для чего нужны трансформаторы тока

Трансформатор тока нулевой последовательности широко используется в организации работы производства, в быту (с его помощью проводят сварочные работы, он нормализуют входящее в дом напряжение, бросок тока, он нормализует работу электросчётчика с целью увеличения безопасности).

Трансформатор является важным инструментом в области электротехники. Текущие уровни электрического тока должны контролироваться в целях безопасности и эффективности работы прочих бытовых и промышленных приборов.

Измерительные устройства, подключенные к трансформаторам, позволяют совершать мониторинг в различных местах по всей системе.

Они также могут быть использованы для измерения электрического использования здания и выставления счетов или целей проверки.

Трансформатор тока – схема

Как сделать свой трансформатор

Трансформаторы состоят из двух цепей, связанных с намагничивающимся материалом, которые называют «сердечником». Оба контура имеют определенную длину, она должна быть такой, чтобы катушки вокруг сердечника могли передавать энергию от одного контура к другому.

В трансформаторе тока первичные цепи (энергия-передача) петли проходят через сердечник ​​только один раз. Вторичная цепь петли проходит несколько раз вокруг ядра. Сердечник может быть стационарным, т.е.

находиться на месте постоянно, или быть шарнирным, чтобы соответствовать направлению тока, что лучше защищает приборы от короткого замыкания.

Для того чтобы собрать мини-трансформатор нам понадобится:

  • Изоляционная лента;
  • Медная проволока для намагничивания (у меди особая плотность, которая помогает создать нужное магнитное поле);
  • Железное кольцо;
  • Амперметр.

Как сделать малогабаритный трансформатор своими руками:

  1. Медную проволоку нужно обернуть вокруг железного кольца, чтобы она охватывала практически всю поверхность кольца. Обмотки могут перекрываться или нет. Чем больше число витков, тем меньше вторичный ток будет принят через вторичную обмотку.
  2. Обмотайте конструкцию изолентой, чтобы детали держались вместе;
  3. Снимите покрытие с концов провода;
  4. Прикрепите зачищенные провода к концам амперметра;
  5. Присоедините линию напряжения сети к железному кольцу. Используйте измерения на амперметре для определения коэффициента преобразования, чтобы можно было определить параметры трансформации и сравнить их с данными из вторичной обмотки;
  6. Вставьте линию питания, которая проходит тестирование к амперметру. Сравните данные, для настройки измените количество витков.

Фото – Одновитковый трансформатор

Таким образом, шинный и импульсный трансформатор может быть добавлен к линии уже на месте, съемный сердечник может быть сделан путем присоединения четырех стержней из мягкого железа к линии питания, чем ближе – тем лучше. Три стержня должны быть намотаны заранее. Четвертый при необходимости можно не обматывать, просто прикрепить при помощи изоляционной ленты.

Расчет трансформатора

Расчет силовых трансформаторов холостого хода, у которых начальное напряжение 1 и вторичное 160, с внутренним сопротивлением 0.2Ω производится по такой формуле. В нашем примере первичный ток 800 Ампер, такая методика может подстроиться под любой ток:

Is= Ip (Np/Ns) = 800 (1/160) = 5 A

Мы видим выше, что с вторичной обмотки трансформатор был подключен через амперметр, который имеет очень малое сопротивление, падение напряжения на вторичной обмотке составляет всего 1,0 вольта при полной величине первичного тока на обмотках.

Если амперметр удаляют, вторичная обмотка становится открытой и трансформатор действует как повышающий, в результате очень высокого напряжения равном соотношении:   Vp (Ns / NP), ток регулируется на вторичной обмотке. Формула может изменяться, если у Вас несколько обмоток или более слабый прибор, кроме того, здесь не учтен ток холостого хода трансформатора.

Нужно помнить, что подключение счетчика через трансформаторы тока формула может иметь немного другой вид, т.к. будет учитываться еще и пропускная способность учетного прибора.

Чтобы подобрать нужную мощность трансформатора, нужно просчитать потребное напряжение всех электрических устройств в доме, а после суммировать полученную сумму и вольтамперные характеристики трансформатора (ВАХ). Если эти значения не учтены, то возможна перегрузка и защита не будет достигать нужного уровня при высокой нагрузке сети.

Перед тем, как подключить готовый трансформатор, нужно проконсультироваться со специалистом, он поможет определить недочеты, которые Вы могли упустить из виду.

Как выбрать трансформатор

Поверка трансформаторов тока на месте, ремонт и испытание осуществляется в обязательном порядке, многие предприятия (Самарский и Екатеринбургский завод, Калужский холдинг, Свердловский завод трансформаторов тока и прочие) предоставляют такие услуги. Замена некоторых деталей также должна производиться либо официальным дилером, либо представителем конкретной компании-производителя.

Также нужно знать, что означают условные обозначения:

Фото – Условные обозначения

Их расшифровка поможет Вам провести монтаж устройств, а также разобраться в работе. Любое обозначение стандартизировано. Следите за тем, чтобы в работе трансформатора присутствовала кратность, она может разниться в зависимости от конкретной модели, поэтому внимательно просматривайте паспорт трансформатора и каталог определенных компаний.

Установка соединения производится при полном отключении питания сети, кроме того, желательно, чтобы работу выполнял специалист. Его можно монтировать на дин-рейку, в специальные трансформаторные шкафы, на пусковой панели, открытую местность, непосредственно на электрический щит.

Средняя стоимость на такой прибор в зависимости от его назначения варьируется от 30 000 рублей до 100 000 и выше, возможны номиналы до 10 штук.

Совет

Цена во многом обусловлена мощностью и пропускной способностью, чем ниже допустимая мощность – тем дешевле будет регулятор, подбор осуществляется индивидуально. Очень важно прямо на месте проверить трансформатор на его соответствие заданным характеристикам.

Читайте также:  Устройство электродвигателя постоянного тока - советы электрика

Сроки работы устройства – до 10 лет в зависимости от того, какой мощности купить трансформатор тока, межповерочный интервал прибора 220 220 – 2 года.

Источник: https://www.asutpp.ru/transformatory-toka.html

Устройство и принцип работы трансформатора тока

Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.

Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.

Принцип действия трансформатора тока

Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока.

Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с.

в витках обмотки начнёт протекать вторичный ток.

Назначение трансформаторов

Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.

Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.

При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.

Конструкция трансформатора тока

Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.

Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину).

Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока.

Это может быть отдельная жила электрического кабеля.

Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений. 

Коэффициент трансформации

Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.

Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.

Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.  

Классификация трансформаторов

Существует несколько признаков, по которым трансформаторы тока делятся.

По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.

  • Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
  • Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
  • Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
  • Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.

По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.

По исполнению первичной обмотки бывают одновитковые, многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.

По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.

Обратите внимание

Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.

Источник: http://aquagroup.ru/articles/ustroystvo-i-princip-raboty-transformatora-toka.html

Трансформатор тока

Главная » Статьи » » Полезная информация

В данной статье разберем основные вопросы имеющие отношение к трансформаторам тока, выбор по параметрам, правила монтажа и др.

 Трансформатор тока  (ТТ) предназначен для преобразования тока до значения, удобного для измерения.

Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы.

Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.

К трансформаторам тока предъявляются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).

Для учета электроэнергии в цепях переменного тока напряжением 0.4кВ промышленной частоты, при которой потребляемая нагрузка превышает 100А, в схему добавляют трансформаторы тока.

Главным параметром ТТ является коэффициент трансформации, определяющий номинал измерения тока и означает при каком первичном токе во вторичной цепи будет протекать определённый стандартный ток (чаще всего это 5 А).

ТТ с коэффициентом трансформации 100/5 рассчитан на максимальную нагрузку 100А, измерительный ток 5 А, показания электросчётчика с таким ТТ надо умножать в 100/5 = 20 раз.

Такое конструктивное решение избавляет от необходимости изготовления мощных электросчётчиков, чтобы сказалось на их дороговизне, защищает прибор от перегрузок и короткого замыкания (перегоревший ТТ легче заменить чем ставить новый счётчик).

При включении данных трансформаторов нужно соблюдать полярность. Входные клеммы первичной катушки имеют обозначение Л1 (начало, подключается фаза сети), Л2(выход, подключается к нагрузке).

В противном случае счетчик будет не досчитывать электроэнергию. Клеммы измерительной обмотки обозначаются И1, И 2. На схемах И1 (вход) обозначается жирной точкой.

Подключение Л1, Л2 осуществляется кабелем, рассчитанным на соответствующие нагрузки.

Важно

Вторичные цепи, согласно ПУЭ, выполняются проводом с сечением не менее 2,5мм². Все соединения ТТ с клеммами счётчика следует выполнять маркированными проводниками с обозначением выводов. Очень часто подключение вторичных цепей измерительных трансформаторов происходит через опломбированный промежуточный клеммник или испытательной коробкой .

Приборы учёта, которые рассчитаны только на прямое, непосредственное включение в сеть, запрещено включать с ТТ, нужно обязательно изучить паспорт устройства, где указана возможность такого подключения, подходящие трансформаторы, а также рекомендуемая электрическая принципиальная схема, ей и нужно будет следовать при монтаже.

Наиболее простой для понимания является схема с тремя ТТ с раздельным подключением вторичных токовых цепей. Подключение электросчетчика через трансформаторы тока выполняется при помощи 10-и проводного кабеля. Конструкция использует раздельные токовые цепи и цепи напряжения.

Самый распространенный универсальный способ подключения, обеспечивающий безопасное обслуживание, это: подключение электросчетчика через трансформаторы тока, с использованием испытательной коробки.

Рассмотрим основные характеристики трансформаторов тока.

  • Номинальное напряжение трансформатора тока.
  • Класс точности
  • Коэффициент трансформации (КТ)

Номинальное напряжение трансформатора тока выбирается из стандартного ряда значений (0,66, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 500, 750, 1150кВ). Так, для систем учета в электроустановках 0,4 кВ должны использоваться преобразующее устройство с Uном=0,66кВ.

Класс точности ТТ определяет допустимую погрешность по току, выраженную в процентах при номинальной вторичной нагрузке. Стандартный ряд классов точности устройств: 0,2; 0,5; 1; 3; 5; 10.

К цифровым значениям этого стандартного ряда могут быть добавлены литеры: Р или S.

  • Р – символ, указывающий, что данный ТТ или его обмотка используется в системах релейной защиты. Как правило, это трансформаторы с классом точности 5Р и 10Р.
  • S – наличие расширенного диапазона измерений ТТ по первичному току (1% до 120%), в то время как ТТ, не имеющие данной маркировки, работают с заданной погрешностью в диапазоне нагрузок 5%-120%.

Выбор значения этого параметра определяется требованиями п 1.5.16 ПУЭ-7; для систем технического учета допускается применение ТТ с классом точности не более 1,0, для расчетного (коммерческого) нормированное документом значение – не более 0,5.

Допускается применение ТТ с классом точности 1,0 если расчетный электросчетчик имеет класс точности 2,0.

Во избежания превышения погрешности ТТ допустимого для его данного класса точности значения, следует соблюдать условие, при котором вторичная нагрузка Z2 (измерительная цепь) не будет превышать номинальную нагрузку Z2ном.

Выбор ТТ по коэффициенту трансформации осуществляется согласно ПУЭ 1.5.

17, где указывается, что при максимальной нагрузке потребления ток вторичной цепи ТТ должен быть не меньше 40 % номинального тока электросчётчика, а при минимальной нагрузке потребления не меньше 5%.

Обязательным является правильное чередование фаз: А, В, С, которое измеряется фазометром или фазоуказателем.

Пример:

Максимальная мощность электроустановки 150 кВт, Напряжение 380В. Рассчитаем КТ для ТТ.

IMAX=  Р /  3 U cos ц = 150 / 1,73*0,38*0,85 = 270 А

Выберем КТ ТТ 300/5. Далее исходя из расчетов определим правильно ли мы выбрали КТ.

Ток во вторичной цепи  при максимальной  нагрузке составляет:

I2 =  I1 / КТ =270/60 = 4,5 А

40 %  IН СЧ. = 5 х 40% = 2,0 А

I2  > 40 % IН СЧ.;  4,5 А  > 2,0 A

Минимальная нагрузка составляет Рмин. = 15,0 кВт (аварийное и дежурное освещение, холодильники промышленные).

Ток в первичной цепи при минимальной нагрузке

Imin =  Р /  3 U cos ц = 15,0 / 1,73*0,38*0,95 = 27 А

Ток во вторичной цепи   при минимальной нагрузке составляет:

I2 =  I1 / Kт   =27/60  = 0,415 А

5 % I н.сч. =  5 х 5% = 0,25 А

I2  > 5 % I н.сч. ;   0,415 А > 0,25 A 

КТ выбран правильно.

Какой покупать

В магазинах представлен большой выбор трансформаторов тока. Самые распрастранненые Т-0.66 У3, ТТИ, ТТИ-А.

Похожие материалы

Всего комментариев:

Источник: http://electric-stupino.ru/publ/poleznaja_informacija/transformator_toka/3-1-0-53

Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.
Читайте также:  Инструменты электрика список - советы электрика

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток.

К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока.

Совет

Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1.

Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока.

Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной – F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь.

При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки.

Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют существенные отличия в работе ТТ и ТН.

Во-первых, первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.

Во-вторых, ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.

В-третьих, не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

В дополнение к теме статьи:

Векторная диаграмма ТТ

Классы точности ТТ

Источник: https://pomegerim.ru/electricheskie-apparaty/naznachenie-i-princip-dejstviya-transformatorov-toka.php

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов до величин требуемых для подключения приборов измерения, устройств РЗиА.

Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

Конструкция и принцип действия трансформатора тока

Трансформаторы тока конструктивно состоят из:

  • замкнутого магнитопровода;
  • 2-х обмоток (первичной, вторичной).

Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная — замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки.

Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

Интересное видео о трансформаторах тока смотрите ниже:

Погрешность ТТ определяется в зависимости от:

  • сечения магнитопровода;
  • проницаемости используемого для производства магнитопровода материала;
  • величины магнитного пути.

Предельное значение сопротивление нагрузки указывается в справочных материалах.

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

  1. В зависимости от назначения их разделяют на:
    1. защитные;
    2. измерительные;
    3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
    4. лабораторные.
  2. По типу установки разделяют устройства:
    1. наружной установки (размещаемые в ОРУ);
    2. внутренней установки (размещаемые в ЗРУ);
    3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
    4. накладные — устанавливаемые сверху на проходные изоляторы;
    5. переносные (для лабораторных испытаний и диагностических измерений).
  3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
    1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
    2. одновитковые;
    3. шинные.
  4. По способу исполнения изоляции ТТ разбивают на устройства:
    1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
    2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
    3. имеющие заливку из компаунда.
  5. По количеству ступеней трансформации ТТ бывают:
    1. одноступенчатые;
    2. двухступенчатые (каскадные).
  6. Исходя из номинального напряжения различают:
    1. ТТ с номинальным напряжением — выше 1 кВ;
    2. ТТ с напряжением – до 1 кВ.

Ещё одно интересное видео о схемах включения трансформаторов тока:

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:

  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.

Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

  • 10 — номинальное напряжение;
  • «0» — конструктивный вариант исполнения;
  • «1» — исполнение по длине корпуса;
  • «А» — вторичные выводы расположенные параллельно установочной поверхности;
  • «Б» — изолирующие барьеры;
  • 0,5S — класс точности измерительной вторичной обмотки;
  • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
  • 10Р — класс точности защитной вторичной обмотки;
  • 10 — номинальная предельная кратность вторичной обмотки для защиты;
  • 5 — номинальная вторичная нагрузка обмотки для измерения;
  • 15 — номинальная вторичная нагрузка обмотки для защиты;
  • 300 — номинальный первичный ток;
  • 5 — номинальный вторичный ток;
  • 31,5 — односекундный ток термической стойкости;
  • «УХЛ» — климатическое исполнение;
  • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

Опорные трансформаторы тока TОП-0,66

ОАО «СЗТТ»

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

  • высота над уровнем моря не более 1000 м;
  • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
  • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
  • рабочее положение — любое.

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.<\p>

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Изготовитель — Фирма ООО «ABB»

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

  • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
  • Максимальное напряжение — 3.6 кВ — 25 кВ
  • Первичный ток — 600 A – 5000 A
  • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
  • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
  • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

Источник: https://pue8.ru/relejnaya-zashchita/241-transformatory-toka-printsip-dejstviya.html

Ссылка на основную публикацию
Adblock
detector